Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (177) GO Terms (13) Nucleotides (63) Proteins (40) Interactants (1071) Wiki
XB-GENEPAGE-485279

Papers associated with wnt1



???displayGene.coCitedPapers???
28 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 3 4 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

BRCA1 and ELK-1 regulate neural progenitor cell fate in the optic tectum in response to visual experience in Xenopus laevis tadpoles., Huang LC, McKeown CR, He HY, Ta AC, Cline HT., Proc Natl Acad Sci U S A. January 16, 2024; 121 (3): e2316542121.                        


RNA localization during early development of the axolotl., Šimková K, Naraine R, Vintr J, Soukup V, Šindelka R., Front Cell Dev Biol. January 1, 2023; 11 1260795.                        


The role of Xenopus developmental biology in unraveling Wnt signalling and antero-posterior axis formation., Niehrs C., Dev Biol. February 1, 2022; 482 1-6.


Xenopus leads the way: Frogs as a pioneering model to understand the human brain., Exner CRT, Willsey HR., Genesis. February 1, 2021; 59 (1-2): e23405.          


Sclerostin inhibits Wnt signaling through tandem interaction with two LRP6 ectodomains., Kim J, Han W, Park T, Kim EJ, Bang I, Lee HS, Lee HS, Jeong Y, Roh K, Kim J, Kim JS, Kang C, Seok C, Han JK, Choi HJ., Nat Commun. October 23, 2020; 11 (1): 5357.            


Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome., Alharatani R, Ververi A, Beleza-Meireles A, Ji W, Mis E, Patterson QT, Griffin JN, Bhujel N, Chang CA, Dixit A, Konstantino M, Healy C, Hannan S, Neo N, Cash A, Li D, Bhoj E, Zackai EH, Cleaver R, Baralle D, McEntagart M, Newbury-Ecob R, Scott R, Hurst JA, Au PYB, Hosey MT, Khokha M, Marciano DK, Lakhani SA, Liu KJ, Liu KJ., Hum Mol Genet. July 21, 2020; 29 (11): 1900-1921.                  


MiR-9 and the Midbrain-Hindbrain Boundary: A Showcase for the Limited Functional Conservation and Regulatory Complexity of MicroRNAs., Alwin Prem Anand A, Alvarez-Bolado G, Wizenmann A., Front Cell Dev Biol. January 1, 2020; 8 586158.  


Mechanistic insights from the LHX1-driven molecular network in building the embryonic head., McMahon R, Sibbritt T, Salehin N, Osteil P, Tam PPL., Dev Growth Differ. June 1, 2019; 61 (5): 327-336.


Non-acylated Wnts Can Promote Signaling., Speer KF, Sommer A, Tajer B, Mullins MC, Klein PS, Lemmon MA., Cell Rep. January 22, 2019; 26 (4): 875-883.e5.                  


AKT signaling displays multifaceted functions in neural crest development., Sittewelle M, Monsoro-Burq AH., Dev Biol. December 1, 2018; 444 Suppl 1 S144-S155.


The neural border: Induction, specification and maturation of the territory that generates neural crest cells., Pla P, Monsoro-Burq AH., Dev Biol. December 1, 2018; 444 Suppl 1 S36-S46.    


Dishevelled: A masterful conductor of complex Wnt signals., Sharma M, Castro-Piedras I, Simmons GE, Pruitt K., Cell Signal. July 1, 2018; 47 52-64.


Glycogen synthase kinase 3 controls migration of the neural crest lineage in mouse and Xenopus., Gonzalez Malagon SG, Lopez Muñoz AM, Doro D, Bolger TG, Poon E, Tucker ER, Adel Al-Lami H, Krause M, Phiel CJ, Chesler L, Liu KJ, Liu KJ., Nat Commun. March 19, 2018; 9 (1): 1126.                  


microRNAs associated with early neural crest development in Xenopus laevis., Ward NJ, Green D, Higgins J, Dalmay T, Münsterberg A, Moxon S, Wheeler GN., BMC Genomics. January 18, 2018; 19 (1): 59.              


An atlas of Wnt activity during embryogenesis in Xenopus tropicalis., Borday C, Parain K, Thi Tran H, Vleminckx K, Vleminckx K, Perron M, Monsoro-Burq AH., PLoS One. January 1, 2018; 13 (4): e0193606.                


Znf703, a novel target of Pax3 and Zic1, regulates hindbrain and neural crest development in Xenopus., Hong CS, Saint-Jeannet JP., Genesis. December 1, 2017; 55 (12):                               


Editorial., Artinger KB, Alfandari D, Alfandari D, Taneyhill LA., Mech Dev. December 1, 2017; 148 1-2.


Angiopoietin-like 4 Is a Wnt Signaling Antagonist that Promotes LRP6 Turnover., Kirsch N, Chang LS, Koch S, Glinka A, Dolde C, Colozza G, Benitez MDJ, De Robertis EM, Niehrs C., Dev Cell. October 9, 2017; 43 (1): 71-82.e6.                                


Folate-dependent methylation of septins governs ciliogenesis during neural tube closure., Toriyama M, Toriyama M, Wallingford JB, Finnell RH., FASEB J. August 1, 2017; 31 (8): 3622-3635.                    


Differential abundance of CK1α provides selectivity for pharmacological CK1α activators to target WNT-dependent tumors., Li B, Orton D, Neitzel LR, Astudillo L, Shen C, Long J, Chen X, Kirkbride KC, Doundoulakis T, Guerra ML, Zaias J, Fei DL, Rodriguez-Blanco J, Thorne C, Wang Z, Jin K, Nguyen DM, Sands LR, Marchetti F, Abreu MT, Cobb MH, Capobianco AJ, Lee E, Robbins DJ., Sci Signal. June 27, 2017; 10 (485):


Dishevelled Paralogs in Vertebrate Development: Redundant or Distinct?, Gentzel M, Schambony A., Front Cell Dev Biol. May 26, 2017; 5 59.    


Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis., Ding Y, Ploper D, Sosa EA, Colozza G, Moriyama Y, Benitez MD, Zhang K, Merkurjev D, De Robertis EM., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.                        


Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes., Hockman D, Burns AJ, Schlosser G, Gates KP, Jevans B, Mongera A, Fisher S, Unlu G, Knapik EW, Kaufman CK, Mosimann C, Zon LI, Lancman JJ, Dong PDS, Lickert H, Tucker AS, Baker CV., Elife. April 7, 2017; 6                 


Evidence for Integrin - Venus Kinase Receptor 1 Alliance in the Ovary of Schistosoma mansoni Females Controlling Cell Survival., Gelmedin V, Morel M, Hahnel S, Cailliau K, Dissous C, Grevelding CG., PLoS Pathog. January 23, 2017; 13 (1): e1006147.                          


An Epha4/Sipa1l3/Wnt pathway regulates eye development and lens maturation., Rothe M, Kanwal N, Dietmann P, Seigfried FA, Hempel A, Schütz D, Reim D, Engels R, Linnemann A, Schmeisser MJ, Bockmann J, Kühl M, Boeckers TM, Kühl SJ., Development. January 15, 2017; 144 (2): 321-333.                              


High-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration., Owens DA, Butler AM, Aguero TH, Newman KM, Van Booven D, King ML., Development. January 15, 2017; 144 (2): 292-304.                                                                                        


Eomesodermin-At Dawn of Cell Fate Decisions During Early Embryogenesis., Probst S, Arnold SJ., Curr Top Dev Biol. January 1, 2017; 122 93-115.


What we can learn from a tadpole about ciliopathies and airway diseases: Using systems biology in Xenopus to study cilia and mucociliary epithelia., Walentek P, Quigley IK., Genesis. January 1, 2017; 55 (1-2):       


Leptin Induces Mitosis and Activates the Canonical Wnt/β-Catenin Signaling Pathway in Neurogenic Regions of Xenopus Tadpole Brain., Bender MC, Sifuentes CJ, Denver RJ., Front Endocrinol (Lausanne). January 1, 2017; 8 99.              


Apolipoprotein C-I mediates Wnt/Ctnnb1 signaling during neural border formation and is required for neural crest development., Yokota C, Åstrand C, Takahashi S, Hagey DW, Stenman JM., Int J Dev Biol. January 1, 2017; 61 (6-7): 415-425.                      


Genome evolution in the allotetraploid frog Xenopus laevis., Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS., Nature. October 20, 2016; 538 (7625): 336-343.                              


Merlin inhibits Wnt/β-catenin signaling by blocking LRP6 phosphorylation., Kim M, Kim S, Lee SH, Kim W, Sohn MJ, Kim HS, Kim J, Jho EH., Cell Death Differ. October 1, 2016; 23 (10): 1638-47.


Capsaicin inhibits the Wnt/β-catenin signaling pathway by down-regulating PP2A., Park DS, Yoon GH, Lee HS, Choi SC., Biochem Biophys Res Commun. September 9, 2016; 478 (1): 455-461.              


Controlled levels of canonical Wnt signaling are required for neural crest migration., Maj E, Künneke L, Loresch E, Grund A, Melchert J, Pieler T, Aspelmeier T, Borchers A., Dev Biol. September 1, 2016; 417 (1): 77-90.                          


The positive transcriptional elongation factor (P-TEFb) is required for neural crest specification., Hatch VL, Marin-Barba M, Moxon S, Ford CT, Ward NJ, Tomlinson ML, Desanlis I, Hendry AE, Hontelez S, van Kruijsbergen I, Veenstra GJ, Münsterberg AE, Wheeler GN., Dev Biol. August 15, 2016; 416 (2): 361-72.                                    


Thyroid hormone activates Wnt/β-catenin signaling involved in adult epithelial development during intestinal remodeling in Xenopus laevis., Hasebe T, Fujimoto K, Kajita M, Ishizuya-Oka A., Cell Tissue Res. August 1, 2016; 365 (2): 309-18.


Identifying domains of EFHC1 involved in ciliary localization, ciliogenesis, and the regulation of Wnt signaling., Zhao Y, Shi J, Winey M, Klymkowsky MW., Dev Biol. March 15, 2016; 411 (2): 257-265.                      


Frogs as integrative models for understanding digestive organ development and evolution., Womble M, Pickett M, Nascone-Yoder N., Semin Cell Dev Biol. March 1, 2016; 51 92-105.


Making muscle: Morphogenetic movements and molecular mechanisms of myogenesis in Xenopus laevis., Sabillo A, Ramirez J, Domingo CR., Semin Cell Dev Biol. March 1, 2016; 51 80-91.


Basal bodies in Xenopus., Zhang S, Mitchell BJ., Cilia. February 3, 2016; 5 2.      


Characterization of Tiki, a New Family of Wnt-specific Metalloproteases., Zhang X, MacDonald BT, Gao H, Shamashkin M, Coyle AJ, Martinez RV, He X., J Biol Chem. January 29, 2016; 291 (5): 2435-43.


A novel role for the tumour suppressor Nitrilase1 modulating the Wnt/β-catenin signalling pathway., Mittag S, Valenta T, Weiske J, Bloch L, Klingel S, Gradl D, Wetzel F, Chen Y, Petersen I, Basler K, Huber O., Cell Discov. January 5, 2016; 2 15039.              


Mechanotransduction During Vertebrate Neurulation., Sokol SY., Curr Top Dev Biol. January 1, 2016; 117 359-76.


The PTK7 and ROR2 Protein Receptors Interact in the Vertebrate WNT/Planar Cell Polarity (PCP) Pathway., Martinez S, Scerbo P, Giordano M, Daulat AM, Lhoumeau AC, Thomé V, Kodjabachian L, Borg JP., J Biol Chem. December 18, 2015; 290 (51): 30562-72.                        


Cooperative and independent functions of FGF and Wnt signaling during early inner ear development., Wright KD, Mahoney Rogers AA, Zhang J, Shim K., BMC Dev Biol. October 6, 2015; 15 33.          


Novel β-carbolines against colorectal cancer cell growth via inhibition of Wnt/β-catenin signaling., Li X, Bai B, Liu L, Ma P, Kong L, Yan J, Zhang J, Ye Z, Zhou H, Mao B, Zhu H, Li Y., Cell Death Discov. October 5, 2015; 1 15033.            


Klhl31 attenuates β-catenin dependent Wnt signaling and regulates embryo myogenesis., Abou-Elhamd A, Alrefaei AF, Mok GF, Garcia-Morales C, Abu-Elmagd M, Wheeler GN, Münsterberg AE., Dev Biol. June 1, 2015; 402 (1): 61-71.              


Spatial and temporal aspects of Wnt signaling and planar cell polarity during vertebrate embryonic development., Sokol SY., Semin Cell Dev Biol. June 1, 2015; 42 78-85.      


Mef2c-F10N enhancer driven β-galactosidase (LacZ) and Cre recombinase mice facilitate analyses of gene function and lineage fate in neural crest cells., Aoto K, Sandell LL, Butler Tjaden NE, Yuen KC, Watt KE, Black BL, Durnin M, Trainor PA., Dev Biol. June 1, 2015; 402 (1): 3-16.


Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes., Tuazon FB, Mullins MC., Semin Cell Dev Biol. June 1, 2015; 42 118-33.

???pagination.result.page??? 1 2 3 4 ???pagination.result.next???