Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (34) GO Terms (9) Nucleotides (41) Proteins (24) Interactants (144) Wiki
XB-GENEPAGE-962904

Papers associated with cav3.1



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

The alpha1I T-type calcium channel exhibits faster gating properties when overexpressed in neuroblastoma/glioma NG 108-15 cells., Chemin J, Monteil A, Dubel S, Nargeot J, Lory P., Eur J Neurosci. November 1, 2001; 14 (10): 1678-86.


Multiple structural elements contribute to the slow kinetics of the Cav3.3 T-type channel., Park JY, Kang HW, Jeong SW, Lee JH, Lee JH., J Biol Chem. May 21, 2004; 279 (21): 21707-13.


Roles of molecular regions in determining differences between voltage dependence of activation of CaV3.1 and CaV1.2 calcium channels., Li J, Stevens L, Klugbauer N, Wray D., J Biol Chem. June 25, 2004; 279 (26): 26858-67.


A molecular determinant of nickel inhibition in Cav3.2 T-type calcium channels., Kang HW, Park JY, Jeong SW, Kim JA, Moon HJ, Perez-Reyes E, Lee JH, Lee JH., J Biol Chem. February 24, 2006; 281 (8): 4823-30.


Augmentation of Cav3.2 T-type calcium channel activity by cAMP-dependent protein kinase A., Kim JA, Park JY, Kang HW, Huh SU, Jeong SW, Lee JH, Lee JH., J Pharmacol Exp Ther. July 1, 2006; 318 (1): 230-7.


Activation of protein kinase C augments T-type Ca2+ channel activity without changing channel surface density., Park JY, Kang HW, Moon HJ, Huh SU, Jeong SW, Soldatov NM, Lee JH., J Physiol. December 1, 2006; 577 (Pt 2): 513-23.


Histidine residues in the IS3-IS4 loop are critical for nickel-sensitive inhibition of the Cav2.3 calcium channel., Kang HW, Moon HJ, Joo SH, Lee JH, Lee JH., FEBS Lett. December 22, 2007; 581 (30): 5774-80.


The epithelial sodium channel (ENaC) traffics to apical membrane in lipid rafts in mouse cortical collecting duct cells., Hill WG, Butterworth MB, Wang H, Edinger RS, Lebowitz J, Peters KW, Frizzell RA, Johnson JP., J Biol Chem. December 28, 2007; 282 (52): 37402-11.


Regulation of CA(v)3.2 Ca2+ channel activity by protein tyrosine phosphorylation., Huh SU, Kang HW, Park JY, Lee JH., J Microbiol Biotechnol. February 1, 2008; 18 (2): 365-8.


An extracellular Cu2+ binding site in the voltage sensor of BK and Shaker potassium channels., Ma Z, Wong KY, Horrigan FT., J Gen Physiol. May 1, 2008; 131 (5): 483-502.                      


Molecular identity and functional properties of a novel T-type Ca2+ channel cloned from the sensory epithelia of the mouse inner ear., Nie L, Zhu J, Gratton MA, Liao A, Mu KJ, Nonner W, Richardson GP, Yamoah EN., J Neurophysiol. October 1, 2008; 100 (4): 2287-99.


Distinct contributions of different structural regions to the current kinetics of the Cav3.3 T-type Ca2+ channel., Kang HW, Park JY, Lee JH, Lee JH., Biochim Biophys Acta. December 1, 2008; 1778 (12): 2740-8.


Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation., Merrick D, Stadler LK, Larner D, Smith J., Dis Model Mech. January 1, 2009; 2 (7-8): 374-88.


Cloning and characterization of voltage-gated calcium channel alpha1 subunits in Xenopus laevis during development., Lewis BB, Wester MR, Miller LE, Nagarkar MD, Johnson MB, Saha MS., Dev Dyn. November 1, 2009; 238 (11): 2891-902.                                


Tarantula toxin ProTx-I differentiates between human T-type voltage-gated Ca2+ Channels Cav3.1 and Cav3.2., Ohkubo T, Yamazaki J, Kitamura K., J Pharmacol Sci. January 1, 2010; 112 (4): 452-8.


AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10., Ovens MJ, Davies AJ, Wilson MC, Murray CM, Halestrap AP., Biochem J. January 15, 2010; 425 (3): 523-30.              


Structural determinants of the high affinity extracellular zinc binding site on Cav3.2 T-type calcium channels., Kang HW, Vitko I, Lee SS, Perez-Reyes E, Lee JH, Lee JH., J Biol Chem. January 29, 2010; 285 (5): 3271-81.


A post-burst after depolarization is mediated by group i metabotropic glutamate receptor-dependent upregulation of Ca(v)2.3 R-type calcium channels in CA1 pyramidal neurons., Park JY, Remy S, Varela J, Cooper DC, Chung S, Kang HW, Lee JH, Spruston N., PLoS Biol. November 16, 2010; 8 (11): e1000534.                    


ZnT-1 enhances the activity and surface expression of T-type calcium channels through activation of Ras-ERK signaling., Mor M, Beharier O, Levy S, Kahn J, Dror S, Blumenthal D, Gheber LA, Peretz A, Katz A, Moran A, Etzion Y., Am J Physiol Cell Physiol. July 15, 2012; 303 (2): C192-203.


Complex modulation of Ca(v)3.1 T-type calcium channel by nickel., Nosal OV, Lyubanova OP, Naidenov VG, Shuba YM., Cell Mol Life Sci. May 1, 2013; 70 (9): 1653-61.


Cooperative activation of the T-type CaV3.2 channel: interaction between Domains II and III., Demers-Giroux PO, Bourdin B, Sauvé R, Parent L., J Biol Chem. October 11, 2013; 288 (41): 29281-93.


The cAMP-binding Popdc proteins have a redundant function in the heart., Brand T, Simrick SL, Poon KL, Schindler RF., Biochem Soc Trans. April 1, 2014; 42 (2): 295-301.      


Selective modulation of cellular voltage-dependent calcium channels by hyperbaric pressure-a suggested HPNS partial mechanism., Aviner B, Gradwohl G, Mor Aviner M, Levy S, Grossman Y., Front Cell Neurosci. May 27, 2014; 8 136.                    


The role of voltage-gated calcium channels in neurotransmitter phenotype specification: Coexpression and functional analysis in Xenopus laevis., Lewis BB, Miller LE, Herbst WA, Saha MS., J Comp Neurol. August 1, 2014; 522 (11): 2518-31.                          


Ca-α1T, a fly T-type Ca2+ channel, negatively modulates sleep., Jeong K, Lee S, Seo H, Oh Y, Jang D, Choe J, Kim D, Lee JH, Jones WD., Sci Rep. January 12, 2015; 5 17893.            


Differential zinc permeation and blockade of L-type Ca2+ channel isoforms Cav1.2 and Cav1.3., Park SJ, Min SH, Kang HW, Lee JH., Biochim Biophys Acta. October 1, 2015; 1848 (10 Pt A): 2092-100.


T-type Calcium Channel Regulation of Neural Tube Closure and EphrinA/EPHA Expression., Abdul-Wajid S, Morales-Diaz H, Khairallah SM, Smith WC., Cell Rep. October 27, 2015; 13 (4): 829-839.      


Molecular Interactions between Tarantula Toxins and Low-Voltage-Activated Calcium Channels., Salari A, Vega BS, Milescu LS, Milescu M., Sci Rep. January 22, 2016; 6 23894.          


Honeybee locomotion is impaired by Am-CaV3 low voltage-activated Ca2+ channel antagonist., Rousset M, Collet C, Cens T, Bastin F, Raymond V, Massou I, Menard C, Thibaud JB, Charreton M, Vignes M, Chahine M, Sandoz JC, Charnet P., Sci Rep. February 1, 2017; 7 41782.        


Functional variants in HCN4 and CACNA1H may contribute to genetic generalized epilepsy., Becker F, Reid CA, Hallmann K, Tae HS, Phillips AM, Teodorescu G, Weber YG, Kleefuss-Lie A, Elger C, Perez-Reyes E, Petrou S, Kunz WS, Lerche H, Maljevic S., Epilepsia Open. August 5, 2017; 2 (3): 334-342.        


Lef1 regulates caveolin expression and caveolin dependent endocytosis, a process necessary for Wnt5a/Ror2 signaling during Xenopus gastrulation., Puzik K, Tonnier V, Opper I, Eckert A, Zhou L, Kratzer MC, Noble FL, Nienhaus GU, Gradl D., Sci Rep. October 30, 2019; 9 (1): 15645.                          


Cyclic Peptides as T-Type Calcium Channel Blockers: Characterization and Molecular Mapping of the Binding Site., Depuydt AS, Rihon J, Cheneval O, Vanmeert M, Schroeder CI, Craik DJ, Lescrinier E, Peigneur S, Tytgat J., ACS Pharmacol Transl Sci. June 7, 2021; 4 (4): 1379-1389.


Phosphorylation states greatly regulate the activity and gating properties of Cav 3.1 T-type Ca2+ channels., Jeong S, Shim JS, Sin SK, Park KS, Lee JH., J Cell Physiol. January 1, 2023; 238 (1): 210-226.              


A single-cell, time-resolved profiling of Xenopus mucociliary epithelium reveals nonhierarchical model of development., Lee J, Møller AF, Chae S, Bussek A, Park TJ, Kim Y, Lee HS, Pers TH, Kwon T, Sedzinski J, Natarajan KN., Sci Adv. April 7, 2023; 9 (14): eadd5745.                                                          

???pagination.result.page??? 1