Results 1 - 22 of 22 results
Gene expression analysis of the Xenopus laevis early limb bud proximodistal axis. , Hudson DT, Bromell JS, Day RC, McInnes T, Ward JM, Beck CW ., Dev Dyn. November 1, 2022; 251 (11): 1880-1896.
Analysis of the Pallial Amygdala in Anurans: Derivatives and Cellular Components. , Jiménez S, Moreno N ., Brain Behav Evol. January 1, 2022; 97 (6): 309-320.
Secreted inhibitors drive the loss of regeneration competence in Xenopus limbs. , Aztekin C , Hiscock TW, Gurdon J , Jullien J , Marioni J, Simons BD., Development. June 1, 2021; 148 (11):
Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis. , Morona R, Bandín S, López JM, Moreno N , González A ., J Comp Neurol. October 1, 2020; 528 (14): 2361-2403.
Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. , Watanabe M, Yasuoka Y, Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H , Ogino H , Fukui A , Taira M , Kinoshita T., Dev Biol. June 15, 2017; 426 (2): 301-324.
Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis. , Morona R, Ferran JL, Puelles L, González A ., J Comp Neurol. March 1, 2017; 525 (4): 715-752.
The Lhx9-integrin pathway is essential for positioning of the proepicardial organ. , Tandon P , Wilczewski CM, Williams CE, Conlon FL ., Development. March 1, 2016; 143 (5): 831-40.
Rho kinase is required to prevent retinal axons from entering the contralateral optic nerve. , Cechmanek PB, Hehr CL , McFarlane S ., Mol Cell Neurosci. November 1, 2015; 69 30-40.
Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis. , Bandín S, Morona R, González A ., Front Neuroanat. February 3, 2015; 9 107.
Fezf2 promotes neuronal differentiation through localised activation of Wnt/ β-catenin signalling during forebrain development. , Zhang S , Li J, Lea R, Vleminckx K , Vleminckx K , Amaya E ., Development. December 1, 2014; 141 (24): 4794-805.
Transit amplification in the amniote cerebellum evolved via a heterochronic shift in NeuroD1 expression. , Butts T, Hanzel M, Wingate RJ., Development. July 1, 2014; 141 (14): 2791-5.
Tcf21 regulates the specification and maturation of proepicardial cells. , Tandon P , Miteva YV, Kuchenbrod LM , Cristea IM, Conlon FL ., Development. June 1, 2013; 140 (11): 2409-21.
Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions. , Domínguez L, Morona R, González A , Moreno N ., J Comp Neurol. March 1, 2013; 521 (4): 725-59.
Transcriptomic analysis of avian digits reveals conserved and derived digit identities in birds. , Wang Z, Young RL, Xue H, Wagner GP., Nature. September 4, 2011; 477 (7366): 583-6.
FGF receptor dependent regulation of Lhx9 expression in the developing nervous system. , Atkinson-Leadbeater K , Bertolesi GE , Johnston JA , Hehr CL , McFarlane S ., Dev Dyn. February 1, 2009; 238 (2): 367-75.
Cloning and expression analysis of the anterior parahox genes, Gsh1 and Gsh2 from Xenopus tropicalis. , Illes JC, Winterbottom E, Isaacs HV ., Dev Dyn. January 1, 2009; 238 (1): 194-203.
Evidences for tangential migrations in Xenopus telencephalon: developmental patterns and cell tracking experiments. , Moreno N , González A , Rétaux S ., Dev Neurobiol. March 1, 2008; 68 (4): 504-20.
Expression of the forkhead transcription factor FoxN4 in progenitor cells in the developing Xenopus laevis retina and brain. , Kelly LE, Nekkalapudi S, El-Hodiri HM ., Gene Expr Patterns. January 1, 2007; 7 (3): 233-8.
LIM-homeodomain genes as territory markers in the brainstem of adult and developing Xenopus laevis. , Moreno N , Bachy I, Rétaux S , González A ., J Comp Neurol. May 9, 2005; 485 (3): 240-54.
Xenopus aristaless-related homeobox ( xARX) gene product functions as both a transcriptional activator and repressor in forebrain development. , Seufert DW , Prescott NL, El-Hodiri HM ., Dev Dyn. February 1, 2005; 232 (2): 313-24.
LIM-homeodomain genes as developmental and adult genetic markers of Xenopus forebrain functional subdivisions. , Moreno N , Bachy I, Rétaux S , González A ., J Comp Neurol. April 19, 2004; 472 (1): 52-72.
The LIM-homeodomain gene family in the developing Xenopus brain: conservation and divergences with the mouse related to the evolution of the forebrain. , Bachy I, Vernier P, Retaux S ., J Neurosci. October 1, 2001; 21 (19): 7620-9.