Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (152) GO Terms (5) Nucleotides (232) Proteins (85) Interactants (271) Wiki
XB--944820

Papers associated with cdc25c



Limit to papers also referencing gene:
4 paper(s) referencing morpholinos

Results 1 - 50 of 152 results

Page(s): 1 2 3 4 Next

Sort Newest To Oldest Sort Oldest To Newest

Revisiting the multisite phosphorylation that produces the M-phase supershift of key mitotic regulators., Tan T, Wu C, Liu B, Pan BF, Hawke DH, Su Z, Liu S, Zhang W, Wang R, Lin SH, Kuang J., Mol Biol Cell. October 1, 2022; 33 (12): ar115.                                                      


Foxm1 regulates neural progenitor fate during spinal cord regeneration., Pelzer D, Phipps LS, Thuret R, Gallardo-Dodd CJ, Baker SM, Dorey K., EMBO Rep. September 6, 2021; 22 (9): e50932.                        


Protein phosphatase 2A holoenzymes regulate leucine-rich repeat kinase 2 phosphorylation and accumulation., Drouyer M, Bolliger MF, Lobbestael E, Van den Haute C, Emanuele M, Lefebvre R, Sibran W, De Wit T, Leghay C, Mutez E, Dzamko N, Halliday GM, Murayama S, Martoriati A, Cailliau K, Bodart JF, Chartier-Harlin MC, Baekelandt V, Nichols RJ, Taymans JM., Neurobiol Dis. September 1, 2021; 157 105426.                                


Translational Control of Xenopus Oocyte Meiosis: Toward the Genomic Era., Meneau F, Dupré A, Jessus C, Daldello EM., Cells. June 19, 2020; 9 (6):             


Hydrogen Sulfide Impairs Meiosis Resumption in Xenopuslaevis Oocytes., Gelaude A, Slaby S, Cailliau K, Marin M, Lescuyer-Rousseau A, Molinaro C, Nevoral J, Kučerová-Chrpová V, Sedmikova M, Petr J, Martoriati A, Bodart JF., Cells. January 17, 2020; 9 (1):                   


Correction: Polo-like kinase confers MPF autoamplification competence to growing Xenopus oocytes (doi:10.1242/dev.01050)., Karaiskou A, Leprêtre AC, Pahlavan G, Du Pasquier D, Ozon R, Jessus C., Development. July 30, 2018; 145 (14):           


Transition metal dependent regulation of the signal transduction cascade driving oocyte meiosis., Schaefer-Ramadan S, Hubrack S, Machaca K., J Cell Physiol. April 1, 2018; 233 (4): 3164-3175.


Ca2+-Induced Mitochondrial ROS Regulate the Early Embryonic Cell Cycle., Han Y, Ishibashi S, Iglesias-Gonzalez J, Chen Y, Love NR, Amaya E., Cell Rep. January 2, 2018; 22 (1): 218-231.                              


JNK does not regulate meiotic progression in Xenopus oocytes: The strange case of pJNK and pERK., Yue J, López JM., Dev Biol. August 1, 2016; 416 (1): 42-51.


A novel approach to the expression and purification of recombinant Xenopus Cdc25C., Schaefer-Ramadan S, Bendriss G, Hubrack S, Al-Abdulmalek A, Machaca K., Protein Expr Purif. April 1, 2016; 120 148-52.


Dual inhibition of Cdc2 protein kinase activation during apoptosis in Xenopus egg extracts., Tsuchiya Y, Murai S, Yamashita S., FEBS J. April 1, 2015; 282 (7): 1256-70.


Calcium signaling and meiotic exit at fertilization in Xenopus egg., Tokmakov AA, Stefanov VE, Iwasaki T, Sato K, Fukami Y., Int J Mol Sci. October 15, 2014; 15 (10): 18659-76.    


RSK promotes G2/M transition through activating phosphorylation of Cdc25A and Cdc25B., Wu CF, Liu S, Lee YC, Wang R, Sun S, Yin F, Bornmann WG, Yu-Lee LY, Gallick GE, Zhang W, Lin SH, Kuang J., Oncogene. May 1, 2014; 33 (18): 2385-94.


Changes in oscillatory dynamics in the cell cycle of early Xenopus laevis embryos., Tsai TY, Theriot JA, Ferrell JE., PLoS Biol. February 1, 2014; 12 (2): e1001788.              


A genome-wide survey of maternal and embryonic transcripts during Xenopus tropicalis development., Paranjpe SS, Jacobi UG, van Heeringen SJ, Veenstra GJ., BMC Genomics. November 6, 2013; 14 762.              


Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle., Chang JB, Ferrell JE., Nature. August 29, 2013; 500 (7464): 603-7.                


Histone deacetylase induces accelerated maturation in Xenopus laevis oocytes., Iwashita J, Kodama A, Konno Y, Abe T, Murata J., Dev Growth Differ. April 1, 2013; 55 (3): 319-29.


Okadaic acid-sensitive phosphatase is related to MII/G1 transition in mouse oocytes., Moride N, Kuwahara A, Sutoh A, Tanaka Y, Mukai Y, Yamashita M, Matsuzaki T, Yasui T, Irahara M., Zygote. May 1, 2012; 20 (2): 193-8.


SmSak, the second Polo-like kinase of the helminth parasite Schistosoma mansoni: conserved and unexpected roles in meiosis., Long T, Vanderstraete M, Cailliau K, Morel M, Lescuyer A, Gouignard N, Grevelding CG, Browaeys E, Dissous C., PLoS One. January 1, 2012; 7 (6): e40045.              


A critical balance between Cyclin B synthesis and Myt1 activity controls meiosis entry in Xenopus oocytes., Gaffré M, Martoriati A, Belhachemi N, Chambon JP, Houliston E, Jessus C, Karaiskou A., Development. September 1, 2011; 138 (17): 3735-44.


Regulation of Greatwall kinase during Xenopus oocyte maturation., Yamamoto TM, Blake-Hodek K, Williams BC, Lewellyn AL, Goldberg ML, Maller JL., Mol Biol Cell. July 1, 2011; 22 (13): 2157-64.            


Participation of MAPK, PKA and PP2A in the regulation of MPF activity in Bufo arenarum oocytes., Toranzo GS, Bonilla F, Bühler MC, Bühler MI., Zygote. May 1, 2011; 19 (2): 181-9.


Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited., Potapova TA, Sivakumar S, Flynn JN, Li R, Gorbsky GJ., Mol Biol Cell. April 15, 2011; 22 (8): 1191-206.              


Ultrasensitivity in the Regulation of Cdc25C by Cdk1., Trunnell NB, Poon AC, Kim SY, Ferrell JE., Mol Cell. February 4, 2011; 41 (3): 263-74.


Temporal and spatial expression patterns of Cdc25 phosphatase isoforms during early Xenopus development., Nakajo N, Deno YK, Ueno H, Kenmochi C, Shimuta K, Sagata N., Int J Dev Biol. January 1, 2011; 55 (6): 627-32.    


Direct roles of the signaling kinase RSK2 in Cdc25C activation during Xenopus oocyte maturation., Wang R, Jung SY, Wu CF, Qin J, Kobayashi R, Gallick GE, Kuang J., Proc Natl Acad Sci U S A. November 16, 2010; 107 (46): 19885-90.


Constant regulation of both the MPF amplification loop and the Greatwall-PP2A pathway is required for metaphase II arrest and correct entry into the first embryonic cell cycle., Lorca T, Bernis C, Vigneron S, Burgess A, Brioudes E, Labbé JC, Castro A., J Cell Sci. July 1, 2010; 123 (Pt 13): 2281-91.              


Dissecting the M phase-specific phosphorylation of serine-proline or threonine-proline motifs., Wu CF, Wang R, Liang Q, Liang J, Li W, Jung SY, Qin J, Lin SH, Kuang J., Mol Biol Cell. May 1, 2010; 21 (9): 1470-81.              


Cell cycle control of wnt receptor activation., Davidson G, Shen J, Huang YL, Su Y, Karaulanov E, Bartscherer K, Hassler C, Stannek P, Boutros M, Niehrs C., Dev Cell. December 1, 2009; 17 (6): 788-99.    


Protein kinase A regulates resumption of meiosis by phosphorylation of Cdc25B in mammalian oocytes., Pirino G, Wescott MP, Donovan PJ., Cell Cycle. February 15, 2009; 8 (4): 665-70.


Roles of Greatwall kinase in the regulation of cdc25 phosphatase., Zhao Y, Haccard O, Wang R, Yu J, Kuang J, Jessus C, Goldberg ML., Mol Biol Cell. April 1, 2008; 19 (4): 1317-27.                        


Zinc regulates the ability of Cdc25C to activate MPF/cdk1., Sun L, Chai Y, Hannigan R, Bhogaraju VK, Machaca K., J Cell Physiol. October 1, 2007; 213 (1): 98-104.


Vesicular traffic at the cell membrane regulates oocyte meiotic arrest., El-Jouni W, Haun S, Hodeify R, Hosein Walker A, Machaca K., Development. September 1, 2007; 134 (18): 3307-15.


A combination of neutral loss and targeted product ion scanning with two enzymatic digestions facilitates the comprehensive mapping of phosphorylation sites., Casado-Vela J, Ruiz EJ, Nebreda AR, Casal JI., Proteomics. August 1, 2007; 7 (15): 2522-9.


Regulation of Cdc25C by ERK-MAP kinases during the G2/M transition., Wang R, He G, Nelman-Gonzalez M, Ashorn CL, Gallick GE, Stukenberg PT, Kirschner MW, Kuang J., Cell. March 23, 2007; 128 (6): 1119-32.


Role for non-proteolytic control of M-phase-promoting factor activity at M-phase exit., D'Angiolella V, Palazzo L, Santarpia C, Costanzo V, Grieco D., PLoS One. February 28, 2007; 2 (2): e247.          


Anti-breast cancer activity of LFM-A13, a potent inhibitor of Polo-like kinase (PLK)., Uckun FM, Dibirdik I, Qazi S, Vassilev A, Ma H, Mao C, Benyumov A, Emami KH., Bioorg Med Chem. January 15, 2007; 15 (2): 800-14.


Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis., Margolis SS, Perry JA, Forester CM, Nutt LK, Guo Y, Jardim MJ, Thomenius MJ, Freel CD, Darbandi R, Ahn JH, Arroyo JD, Wang XF, Shenolikar S, Nairn AC, Dunphy WG, Hahn WC, Virshup DM, Kornbluth S., Cell. November 17, 2006; 127 (4): 759-73.


Hedgehog signaling and the retina: insights into the mechanisms controlling the proliferative properties of neural precursors., Locker M, Agathocleous M, Amato MA, Parain K, Harris WA, Perron M., Genes Dev. November 1, 2006; 20 (21): 3036-48.


A role for PP1 in the Cdc2/Cyclin B-mediated positive feedback activation of Cdc25., Margolis SS, Perry JA, Weitzel DH, Freel CD, Yoshida M, Haystead TA, Kornbluth S., Mol Biol Cell. April 1, 2006; 17 (4): 1779-89.


New pathways from PKA to the Cdc2/cyclin B complex in oocytes: Wee1B as a potential PKA substrate., Han SJ, Conti M., Cell Cycle. February 1, 2006; 5 (3): 227-31.


Inference of genetic network of Xenopus frog egg: improved genetic algorithm., Wu SJ, Chou CH, Wu CT, Lee TT., Conf Proc IEEE Eng Med Biol Soc. January 1, 2006; 2006 4147-50.


A cell cycle arrest is necessary for bottle cell formation in the early Xenopus gastrula: integrating cell shape change, local mitotic control and mesodermal patterning., Kurth T., Mech Dev. December 1, 2005; 122 (12): 1251-65.                  


Changes in regulatory phosphorylation of Cdc25C Ser287 and Wee1 Ser549 during normal cell cycle progression and checkpoint arrests., Stanford JS, Ruderman JV., Mol Biol Cell. December 1, 2005; 16 (12): 5749-60.


Biochemical characterization of Cdk2-Speedy/Ringo A2., Cheng A, Gerry S, Kaldis P, Solomon MJ., BMC Biochem. September 28, 2005; 6 19.              


Xenopus Polo-like kinase Plx1: a multifunctional mitotic kinase., Liu J, Maller JL., Oncogene. January 10, 2005; 24 (2): 238-47.


Phosphorylation of Cdc25C by pp90Rsk contributes to a G2 cell cycle arrest in Xenopus cycling egg extracts., Chun J, Chau AS, Maingat FG, Edmonds SD, Ostergaard HL, Shibuya EK., Cell Cycle. January 1, 2005; 4 (1): 148-54.


DNA replication checkpoint control of Wee1 stability by vertebrate Hsl7., Yamada A, Duffy B, Perry JA, Kornbluth S., J Cell Biol. December 6, 2004; 167 (5): 841-9.              


Remote hot spots mediate protein substrate recognition for the Cdc25 phosphatase., Sohn J, Kristjánsdóttir K, Safi A, Parker B, Kiburz B, Rudolph J., Proc Natl Acad Sci U S A. November 23, 2004; 101 (47): 16437-41.


Potential role of protein tyrosine phosphatase nonreceptor type 13 in the control of oocyte meiotic maturation., Nedachi T, Conti M., Development. October 1, 2004; 131 (20): 4987-98.

Page(s): 1 2 3 4 Next