Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (57) GO Terms (18) Nucleotides (33) Proteins (23) Interactants (409) Wiki
XB-GENEPAGE-480238

Papers associated with igf1



???displayGene.coCitedPapers???
5 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Insulin-like growth factor I (IGF-I) enhances hyaluronic acid synthesis in rabbit pericardium., Honda A, Iwai T, Mori Y., Biochim Biophys Acta. December 14, 1989; 1014 (3): 305-12.


Evolution of insulin-like growth factor I (IGF-I): structure and expression of an IGF-I precursor from Xenopus laevis., Kajimoto Y, Rotwein P., Mol Endocrinol. February 1, 1990; 4 (2): 217-26.


Cooperative enhancement of hyaluronic acid synthesis by combined use of IGF-I and EGF, and inhibition by tyrosine kinase inhibitor genistein, in cultured mesothelial cells from rabbit pericardial cavity., Honda A, Noguchi N, Takehara H, Ohashi Y, Asuwa N, Mori Y., J Cell Sci. January 1, 1991; 98 ( Pt 1) 91-8.


Effects of insulin, insulin-like growth factor-I (IGF-I) and progesterone on glucose and amino acid uptake in Xenopus laevis oocytes., Hainaut P, Kowalski A, Le Marchand-Brustel Y, Giorgetti S, Gautier N, Van Obberghen E., Mol Cell Endocrinol. February 1, 1991; 75 (2): 133-9.


Insulin and insulin-like-growth-factor-I (IGF-I) receptors in Xenopus laevis oocytes. Comparison with insulin receptors from liver and muscle., Hainaut P, Kowalski A, Giorgetti S, Baron V, Van Obberghen E., Biochem J. February 1, 1991; 273 ( Pt 3) 673-8.


The insulin-like growth factor 1 (IGF-1) receptor is responsible for mediating the effects of insulin, IGF-1, and IGF-2 in Xenopus laevis oocytes., Janicot M, Flores-Riveros JR, Lane MD., J Biol Chem. May 25, 1991; 266 (15): 9382-91.


Antibodies to phosphotyrosine injected in Xenopus laevis oocytes modulate maturation induced by insulin/IGF-I., Hainaut P, Giorgetti S, Kowalski A, Ballotti R, Van Obberghen E., Exp Cell Res. July 1, 1991; 195 (1): 129-36.


Genes encoding receptors for insulin and insulin-like growth factor I are expressed in Xenopus oocytes and embryos., Scavo L, Shuldiner AR, Serrano J, Dashner R, Roth J, de Pablo F., Proc Natl Acad Sci U S A. July 15, 1991; 88 (14): 6214-8.


Insulin receptors on Xenopus laevis oocytes: effects of injection of ob/ob mouse liver mRNA., Diss DA, Greenstein BD., J Cell Sci. September 1, 1991; 100 ( Pt 1) 167-71.


Insulin-like growth factor 1, insulin, and progesterone induce early and late increases in Xenopus oocyte sn-1,2-diacylglycerol levels before meiotic cell division., Stith BJ, Kirkwood AJ, Wohnlich E., J Cell Physiol. November 1, 1991; 149 (2): 252-9.


Inhibitors of phosphodiesterase III block stimulation of Xenopus laevis oocyte ribosomal S6 kinase activity by insulin-like growth factor-I., Sadler SE., Mol Endocrinol. December 1, 1991; 5 (12): 1947-54.


Type III phosphodiesterase plays a necessary role in the growth-promoting actions of insulin, insulin-like growth factor-I, and Ha p21ras in Xenopus laevis oocytes., Sadler SE., Mol Endocrinol. December 1, 1991; 5 (12): 1939-46.


Insulin receptor substrate 1 mediates insulin and insulin-like growth factor I-stimulated maturation of Xenopus oocytes., Chuang LM, Myers MG, Seidner GA, Birnbaum MJ, White MF, Kahn CR., Proc Natl Acad Sci U S A. June 1, 1993; 90 (11): 5172-5.


Phylogeny of the insulin-like growth factors (IGFs) and receptors: a molecular approach., LeRoith D, Kavsan VM, Koval AP, Roberts CT., Mol Reprod Dev. August 1, 1993; 35 (4): 332-6; discussion 337-8.


Insulin-stimulated oocyte maturation requires insulin receptor substrate 1 and interaction with the SH2 domains of phosphatidylinositol 3-kinase., Chuang LM, Myers MG, Backer JM, Shoelson SE, White MF, Birnbaum MJ, Kahn CR., Mol Cell Biol. November 1, 1993; 13 (11): 6653-60.


Insulin and IGF-1 signaling in oocyte maturation., Grigorescu F, Baccara MT, Rouard M, Renard E., Horm Res. January 1, 1994; 42 (1-2): 55-61.


Insulin-like growth factor 1 receptor-mediated endocytosis in Xenopus laevis oocytes. A role for receptor tyrosine kinase activity., Taghon MS, Sadler SE., Dev Biol. May 1, 1994; 163 (1): 66-74.


Insulin and insulin-like growth factor I (IGF-I) stimulate GLUT4 glucose transporter translocation in Xenopus oocytes., Mora S, Kaliman P, Chillarón J, Testar X, Palacín M, Zorzano A., Biochem J. October 1, 1995; 311 ( Pt 1) 59-65.


Immunohistochemical localization of insulin-like growth factor I and II in the endocrine pancreas of birds, reptiles, and amphibia., Reinecke M, Broger I, Brun R, Zapf J, Maake C., Gen Comp Endocrinol. December 1, 1995; 100 (3): 385-96.


Analysis of R59022 actions in Xenopus laevis oocytes., Sadler SE, Frith T, Wasserman WJ., J Exp Zool. April 1, 1996; 274 (5): 317-25.


A peroxovanadium compound induces Xenopus oocyte maturation: inhibition by a neutralizing anti-insulin receptor antibody., Cummings C, Zhu L, Sorisky A, Liu XJ., Dev Biol. May 1, 1996; 175 (2): 338-46.


Characterization of the intracellular signalling pathways that underlie growth-factor-stimulated glucose transport in Xenopus oocytes: evidence for ras- and rho-dependent pathways of phosphatidylinositol 3-kinase activation., Thomson FJ, Jess TJ, Moyes C, Plevin R, Gould GW., Biochem J. August 1, 1997; 325 ( Pt 3) 637-43.


Regulation of quantal secretion by neurotrophic factors at developing motoneurons in Xenopus cell cultures., Liou JC, Yang RS, Fu WM., J Physiol. August 15, 1997; 503 ( Pt 1) 129-39.


An immunohistochemical and morphometric analysis of insulin, insulin-like growth factor I, glucagon, somatostatin, and PP in the development of the gastro-entero-pancreatic system of Xenopus laevis., Maake C, Hanke W, Reinecke M., Gen Comp Endocrinol. May 1, 1998; 110 (2): 182-95.                


Gene and cDNA structures of flounder insulin-like growth factor-I (IGF-I): multiple mRNA species encode a single short mature IGF-I., Tanaka M, Taniguchi T, Yamamoto I, Sakaguchi K, Yoshizato H, Ohkubo T, Nakashima K., DNA Cell Biol. October 1, 1998; 17 (10): 859-68.


The small muscle-specific protein Csl modifies cell shape and promotes myocyte fusion in an insulin-like growth factor 1-dependent manner., Palmer S, Groves N, Schindeler A, Yeoh T, Biben C, Wang CC, Sparrow DB, Barnett L, Jenkins NA, Copeland NG, Koentgen F, Mohun T, Harvey RP., J Cell Biol. May 28, 2001; 153 (5): 985-98.                    


Mammalian follicle-stimulating hormone and insulin-like growth factor I (IGF-I) up-regulate IGF-I gene expression in organ culture of newt testis., Yamamoto T, Nakayama Y, Abé SI., Mol Reprod Dev. September 1, 2001; 60 (1): 56-64.


Hepatocyte nuclear factors-1alpha, -1beta, and -3beta expressed in the gonad of tilapia (Oreochromis mossambicus)., Huang WT, Gong HY, Lin CJ, Weng CF, Chen MH, Wu JL., Biochem Biophys Res Commun. November 9, 2001; 288 (4): 833-40.


The IGF pathway regulates head formation by inhibiting Wnt signaling in Xenopus., Richard-Parpaillon L, Héligon C, Chesnel F, Boujard D, Philpott A., Dev Biol. April 15, 2002; 244 (2): 407-17.                    


GIPC gene family (Review)., Katoh M., Int J Mol Med. June 1, 2002; 9 (6): 585-9.


Serum and glucocorticoid inducible kinases in the regulation of the cardiac sodium channel SCN5A., Boehmer C, Wilhelm V, Palmada M, Wallisch S, Henke G, Brinkmeier H, Cohen P, Pieske B, Lang F., Cardiovasc Res. March 15, 2003; 57 (4): 1079-84.


Insulin signaling inhibits the 5-HT2C receptor in choroid plexus via MAP kinase., Hurley JH, Zhang S, Bye LS, Marshall MS, DePaoli-Roach AA, Guan K, Fox AP, Yu L., BMC Neurosci. June 9, 2003; 4 10.        


Subunit contributions to phosphorylation-dependent modulation of bovine rod cyclic nucleotide-gated channels., Molokanova E, Krajewski JL, Satpaev D, Luetje CW, Kramer RH., J Physiol. October 15, 2003; 552 (Pt 2): 345-56.


Sensitization and translocation of TRPV1 by insulin and IGF-I., Van Buren JJ, Bhat S, Rotello R, Pauza ME, Premkumar LS., Mol Pain. April 27, 2005; 1 17.        


The serine/threonine kinases SGK1, 3 and PKB stimulate the amino acid transporter ASCT2., Palmada M, Speil A, Jeyaraj S, Böhmer C, Lang F., Biochem Biophys Res Commun. May 27, 2005; 331 (1): 272-7.


Kermit 2/XGIPC, an IGF1 receptor interacting protein, is required for IGF signaling in Xenopus eye development., Wu J, O'Donnell M, Gitler AD, Klein PS., Development. September 1, 2006; 133 (18): 3651-60.          


PP2A:B56epsilon is required for eye induction and eye field separation., Rorick AM, Mei W, Liette NL, Phiel C, El-Hodiri HM, Yang J., Dev Biol. February 15, 2007; 302 (2): 477-93.                  


The vitronectin gene in rainbow trout: cloning, expression and phylogenetic analysis., Marioli DJ, Zarkadis IK., Fish Shellfish Immunol. January 1, 2008; 24 (1): 18-25.


Differential regulation of gonadotropins (FSH and LH) and growth hormone (GH) by neuroendocrine, endocrine, and paracrine factors in the zebrafish--an in vitro approach., Lin SW, Ge W., Gen Comp Endocrinol. January 15, 2009; 160 (2): 183-93.


IGF-1 receptors in Xenopus laevis ovarian follicle cells support the oocyte maturation response., Sadler SE, Angleson JK, Dsouza M., Biol Reprod. March 1, 2010; 82 (3): 591-8.


Cell adhesion glycoprotein vitronectin during Xenopus laevis embryogenesis., Luque ME, Serrano MA, Honoré SM, Mónaco ME, Sánchez SS., Gene Expr Patterns. June 1, 2010; 10 (4-5): 207-13.        


PKB/SGK-resistant GSK3 enhances phosphaturia and calciuria., Föller M, Kempe DS, Boini KM, Pathare G, Siraskar B, Capuano P, Alesutan I, Sopjani M, Stange G, Mohebbi N, Bhandaru M, Ackermann TF, Judenhofer MS, Pichler BJ, Biber J, Wagner CA, Lang F., J Am Soc Nephrol. May 1, 2011; 22 (5): 873-80.


IGF-1 increases invasive potential of MCF 7 breast cancer cells and induces activation of latent TGF-β1 resulting in epithelial to mesenchymal transition., Walsh LA, Damjanovski S., Cell Commun Signal. May 2, 2011; 9 (1): 10.            


Xenopus laevis insulin receptor substrate IRS-1 is important for eye development., Bugner V, Aurhammer T, Kühl M., Dev Dyn. July 1, 2011; 240 (7): 1705-15.            


Assessment of tools for marker-assisted selection in a marine commercial species: significant association between MSTN-1 gene polymorphism and growth traits., Sánchez-Ramos I, Cross I, Mácha J, Martínez-Rodríguez G, Krylov V, Rebordinos L., ScientificWorldJournal. January 1, 2012; 2012 369802.      


BMP signal attenuates FGF pathway in anteroposterior neural patterning., Cho GS, Choi SC, Han JK., Biochem Biophys Res Commun. May 10, 2013; 434 (3): 509-15.        


Characterization of the insulin-like growth factor binding protein family in Xenopus tropicalis., Haramoto Y, Oshima T, Takahashi S, Ito Y., Int J Dev Biol. January 1, 2014; 58 (9): 705-11.                                            


Upregulation of the Na⁺-coupled phosphate cotransporters NaPi-IIa and NaPi-IIb by B-RAF., Pakladok T, Hosseinzadeh Z, Lebedeva A, Alesutan I, Lang F., J Membr Biol. February 1, 2014; 247 (2): 137-45.


MicroRNAs are critical regulators of tuberous sclerosis complex and mTORC1 activity in the size control of the Xenopus kidney., Romaker D, Kumar V, Cerqueira DM, Cox RM, Wessely O., Proc Natl Acad Sci U S A. April 29, 2014; 111 (17): 6335-40.                                                          


Transcriptomic profiling in Silurana tropicalis testes exposed to finasteride., Bissegger S, Martyniuk CJ, Langlois VS., Gen Comp Endocrinol. July 1, 2014; 203 137-45.

???pagination.result.page??? 1 2 ???pagination.result.next???