Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (317) GO Terms (11) Nucleotides (95) Proteins (63) Interactants (889) Wiki
XB-GENEPAGE-853971

Papers associated with cftr



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH(2)-terminal nucleotide binding domain., Chan KW, Csanády L, Seto-Young D, Nairn AC, Gadsby DC., J Gen Physiol. August 1, 2000; 116 (2): 163-80.                          


Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains., Csanády L, Chan KW, Seto-Young D, Kopsco DC, Nairn AC, Gadsby DC., J Gen Physiol. September 1, 2000; 116 (3): 477-500.                          


The cytosolic termini of the beta- and gamma-ENaC subunits are involved in the functional interactions between cystic fibrosis transmembrane conductance regulator and epithelial sodium channel., Ji HL, Chalfant ML, Jovov B, Lockhart JP, Parker SB, Fuller CM, Stanton BA, Benos DJ., J Biol Chem. September 8, 2000; 275 (36): 27947-56.


E3KARP mediates the association of ezrin and protein kinase A with the cystic fibrosis transmembrane conductance regulator in airway cells., Sun F, Hug MJ, Lewarchik CM, Yun CH, Bradbury NA, Frizzell RA., J Biol Chem. September 22, 2000; 275 (38): 29539-46.


Transport rates of GABA transporters: regulation by the N-terminal domain and syntaxin 1A., Deken SL, Beckman ML, Boos L, Quick MW., Nat Neurosci. October 1, 2000; 3 (10): 998-1003.


Potent stimulation and inhibition of the CFTR Cl(-) current by phloxine B., Bachmann A, Russ U, Waldegger S, Quast U., Br J Pharmacol. October 1, 2000; 131 (3): 433-40.


Anion permeation in Ca(2+)-activated Cl(-) channels., Qu Z, Hartzell HC., J Gen Physiol. December 1, 2000; 116 (6): 825-44.                          


Effects of the serine/threonine kinase SGK1 on the epithelial Na(+) channel (ENaC) and CFTR: implications for cystic fibrosis., Wagner CA, Ott M, Klingel K, Beck S, Melzig J, Friedrich B, Wild KN, Bröer S, Moschen I, Albers A, Waldegger S, Tümmler B, Egan ME, Geibel JP, Kandolf R, Lang F., Cell Physiol Biochem. January 1, 2001; 11 (4): 209-18.


Functional integrity of the vesicle transporting machinery is required for complete activation of cFTR expressed in xenopus laevis oocytes., Weber WM, Segal A, Simaels J, Vankeerberghen A, Cassiman JJ, Van Driessche W., Pflugers Arch. March 1, 2001; 441 (6): 850-9.


Non-specific activation of the epithelial sodium channel by the CFTR chloride channel., Nagel G, Szellas T, Riordan JR, Friedrich T, Hartung K., EMBO Rep. March 1, 2001; 2 (3): 249-54.


Control of the cystic fibrosis transmembrane conductance regulator by alphaG(i) and RGS proteins., Schreiber R, Kindle P, Benzing T, Walz G, Kunzelmann K., Biochem Biophys Res Commun. March 9, 2001; 281 (4): 917-23.


Plasma membrane protein clusters appear in CFTR-expressing Xenopus laevis oocytes after cAMP stimulation., Schillers H, Danker T, Madeja M, Oberleithner H., J Membr Biol. April 1, 2001; 180 (3): 205-12.


PKC-mediated stimulation of amphibian CFTR depends on a single phosphorylation consensus site. insertion of this site confers PKC sensitivity to human CFTR., Button B, Reuss L, Altenberg GA., J Gen Physiol. May 1, 2001; 117 (5): 457-68.                    


Chromanol 293B, a blocker of the slow delayed rectifier K+ current (IKs), inhibits the CFTR Cl- current., Bachmann A, Quast U, Russ U., Naunyn Schmiedebergs Arch Pharmacol. June 1, 2001; 363 (6): 590-6.


Control of cystic fibrosis transmembrane conductance regulator expression by BAP31., Lambert G, Becker B, Schreiber R, Boucherot A, Reth M, Kunzelmann K., J Biol Chem. June 8, 2001; 276 (23): 20340-5.


Regulation and properties of KCNQ1 (K(V)LQT1) and impact of the cystic fibrosis transmembrane conductance regulator., Boucherot A, Schreiber R, Kunzelmann K., J Membr Biol. July 1, 2001; 182 (1): 39-47.


Effects of 8-cpt-cAMP on the epithelial sodium channel expressed in Xenopus oocytes., Chraïbi A, Schnizler M, Clauss W, Horisberger JD., J Membr Biol. September 1, 2001; 183 (1): 15-23.


Cysteine substitutions reveal dual functions of the amino-terminal tail in cystic fibrosis transmembrane conductance regulator channel gating., Fu J, Kirk KL., J Biol Chem. September 21, 2001; 276 (38): 35660-8.


Different activation mechanisms of cystic fibrosis transmembrane conductance regulator expressed in Xenopus laevis oocytes., Webe WM, Segal A, Vankeerberghen A, Cassiman JJ, Van Driessche W., Comp Biochem Physiol A Mol Integr Physiol. October 1, 2001; 130 (3): 521-31.


CFTR: covalent modification of cysteine-substituted channels expressed in Xenopus oocytes shows that activation is due to the opening of channels resident in the plasma membrane., Liu X, Smith SS, Sun F, Dawson DC., J Gen Physiol. October 1, 2001; 118 (4): 433-46.                  


CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction., Smith SS, Liu X, Zhang ZR, Sun F, Kriewall TE, McCarty NA, Dawson DC., J Gen Physiol. October 1, 2001; 118 (4): 407-31.                                      


Identification of a region of strong discrimination in the pore of CFTR., McCarty NA, Zhang ZR., Am J Physiol Lung Cell Mol Physiol. October 1, 2001; 281 (4): L852-67.


A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating., Fu J, Ji HL, Naren AP, Kirk KL., J Physiol. October 15, 2001; 536 (Pt 2): 459-70.


The cystic fibrosis transmembrane conductance regulator (CFTR) inhibits ENaC through an increase in the intracellular Cl- concentration., König J, Schreiber R, Voelcker T, Mall M, Kunzelmann K., EMBO Rep. November 1, 2001; 2 (11): 1047-51.


Role of CFTR's PDZ1-binding domain, NBF1 and Cl(-) conductance in inhibition of epithelial Na(+) channels in Xenopus oocytes., Boucherot A, Schreiber R, Kunzelmann K., Biochim Biophys Acta. November 1, 2001; 1515 (1): 64-71.


Quantitative analysis of ATP-dependent gating of CFTR., Powe A, Zhou Z, Hwang TC, Nagel G., Methods Mol Med. January 1, 2002; 70 67-98.


CFTR regulation of ENaC., Donaldson SH, Poligone EG, Stutts MJ., Methods Mol Med. January 1, 2002; 70 343-64.


Probing CFTR channel structure and function using the substituted-cysteine-accessibility method., Akabas MH., Methods Mol Med. January 1, 2002; 70 159-74.


Intracellular cysteines of the cystic fibrosis transmembrane conductance regulator (CFTR) modulate channel gating., Ketchum CJ, Yue H, Alessi KA, Devidas S, Guggino WB, Maloney PC., Cell Physiol Biochem. January 1, 2002; 12 (1): 1-8.


Voltage-sensitive gating induced by a mutation in the fifth transmembrane domain of CFTR., Zhang ZR, Zeltwanger S, Smith SS, Dawson DC, McCarty NA., Am J Physiol Lung Cell Mol Physiol. January 1, 2002; 282 (1): L135-45.


The severe G480C cystic fibrosis mutation, when replicated in the mouse, demonstrates mistrafficking, normal survival and organ-specific bioelectrics., Dickinson P, Smith SN, Webb S, Kilanowski FM, Campbell IJ, Taylor MS, Porteous DJ, Willemsen R, de Jonge HR, Farley R, Alton EW, Dorin JR., Hum Mol Genet. February 1, 2002; 11 (3): 243-51.


Adenine nucleotide-induced activation of adenosine A(2B) receptors expressed in Xenopus laevis oocytes: involvement of a rapid and localized adenosine formation by ectonucleotidases., Matsuoka I, Ohkubo S, Kimura J, Uezono Y., Mol Pharmacol. March 1, 2002; 61 (3): 606-13.


Up-regulation of acid-gated Na(+) channels (ASICs) by cystic fibrosis transmembrane conductance regulator co-expression in Xenopus oocytes., Ji HL, Jovov B, Fu J, Bishop LR, Mebane HC, Fuller CM, Stanton BA, Benos DJ., J Biol Chem. March 8, 2002; 277 (10): 8395-405.


Genistein restores functional interactions between Delta F508-CFTR and ENaC in Xenopus oocytes., Suaud L, Li J, Jiang Q, Rubenstein RC, Kleyman TR., J Biol Chem. March 15, 2002; 277 (11): 8928-33.


Cystic fibrosis transmembrane conductance regulator-dependent up-regulation of Kir1.1 (ROMK) renal K+ channels by the epithelial sodium channel., Konstas AA, Koch JP, Tucker SJ, Korbmacher C., J Biol Chem. July 12, 2002; 277 (28): 25377-84.


Cysteine string protein interacts with and modulates the maturation of the cystic fibrosis transmembrane conductance regulator., Zhang H, Peters KW, Sun F, Marino CR, Lang J, Burgoyne RD, Frizzell RA., J Biol Chem. August 9, 2002; 277 (32): 28948-58.                    


No evidence for inhibition of ENaC through CFTR-mediated release of ATP., König J, Schreiber R, Mall M, Kunzelmann K., Biochim Biophys Acta. September 20, 2002; 1565 (1): 17-28.                  


Structural basis for activation of G-protein-coupled receptors., Gether U, Asmar F, Meinild AK, Rasmussen SG., Pharmacol Toxicol. December 1, 2002; 91 (6): 304-12.


Genistein improves regulatory interactions between G551D-cystic fibrosis transmembrane conductance regulator and the epithelial sodium channel in Xenopus oocytes., Suaud L, Carattino M, Kleyman TR, Rubenstein RC., J Biol Chem. December 27, 2002; 277 (52): 50341-7.


cAMP-dependent activation of CFTR inhibits the epithelial sodium channel (ENaC) without affecting its surface expression., Konstas AA, Koch JP, Korbmacher C., Pflugers Arch. January 1, 2003; 445 (4): 513-21.


ENaC is inhibited by an increase in the intracellular Cl(-) concentration mediated through activation of Cl(-) channels., Kunzelmann K., Pflugers Arch. January 1, 2003; 445 (4): 504-12.


On the mechanism of MgATP-dependent gating of CFTR Cl- channels., Vergani P, Nairn AC, Gadsby DC., J Gen Physiol. January 1, 2003; 121 (1): 17-36.                          


Regulation of channel gating by AMP-activated protein kinase modulates cystic fibrosis transmembrane conductance regulator activity in lung submucosal cells., Hallows KR, McCane JE, Kemp BE, Witters LA, Foskett JK., J Biol Chem. January 10, 2003; 278 (2): 998-1004.


Apparent affinity of CFTR for ATP is increased by continuous kinase activity., Szellas T, Nagel G., FEBS Lett. January 30, 2003; 535 (1-3): 141-6.


The interaction between syntaxin 1A and cystic fibrosis transmembrane conductance regulator Cl- channels is mechanistically distinct from syntaxin 1A-SNARE interactions., Ganeshan R, Di A, Nelson DJ, Quick MW, Kirk KL., J Biol Chem. January 31, 2003; 278 (5): 2876-85.


P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport., Köttgen M, Löffler T, Jacobi C, Nitschke R, Pavenstädt H, Schreiber R, Frische S, Nielsen S, Leipziger J., J Clin Invest. February 1, 2003; 111 (3): 371-9.


Release of ATP induced by hypertonic solutions in Xenopus oocytes., Aleu J, Martín-Satué M, Navarro P, Pérez de Lara I, Bahima L, Marsal J, Solsona C., J Physiol. February 15, 2003; 547 (Pt 1): 209-19.


Effects of purinergic stimulation, CFTR and osmotic stress on amiloride-sensitive Na+ transport in epithelia and Xenopus oocytes., Schreiber R, König J, Sun J, Markovich D, Kunzelmann K., J Membr Biol. March 15, 2003; 192 (2): 101-10.


Synergistic effects of cystic fibrosis transmembrane conductance regulator and aquaporin-9 in the rat epididymis., Cheung KH, Leung CT, Leung GP, Wong PY., Biol Reprod. May 1, 2003; 68 (5): 1505-10.


Physiological modulation of CFTR activity by AMP-activated protein kinase in polarized T84 cells., Hallows KR, Kobinger GP, Wilson JM, Witters LA, Foskett JK., Am J Physiol Cell Physiol. May 1, 2003; 284 (5): C1297-308.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???