Results 1 - 27 of 27 results
Effective enrichment of stem cells in regenerating Xenopus laevis tadpole tails using the side population method. , Kato S, Kubo T , Fukazawa T ., Dev Growth Differ. August 1, 2022; 64 (6): 290-296.
Pinhead signaling regulates mesoderm heterogeneity via FGF receptor-dependent pathway. , Ossipova O, Itoh K, Radu A, Ezan J, Sokol SY ., Development. January 1, 2020;
Lineage tracing of sclerotome cells in amphibian reveals that multipotent somitic cells originate from lateral somitic frontier. , Della Gaspera B , Mateus A, Andéol Y, Weill L, Charbonnier F, Chanoine C ., Dev Biol. September 1, 2019; 453 (1): 11-18.
Xenopus SOX5 enhances myogenic transcription indirectly through transrepression. , Della Gaspera B , Chesneau A, Weill L, Charbonnier F, Chanoine C ., Dev Biol. October 15, 2018; 442 (2): 262-275.
Shared evolutionary origin of vertebrate neural crest and cranial placodes. , Horie R, Hazbun A, Chen K, Cao C, Levine M, Horie T., Nature. August 1, 2018; 560 (7717): 228-232.
A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates. , Plouhinec JL, Medina-Ruiz S, Borday C, Bernard E, Vert JP, Eisen MB, Harland RM , Monsoro-Burq AH ., PLoS Biol. October 19, 2017; 15 (10): e2004045.
An analysis of MyoD-dependent transcription using CRISPR/Cas9 gene targeting in Xenopus tropicalis embryos. , McQueen C, Pownall ME ., Mech Dev. August 1, 2017; 146 1-9.
Genomic integration of Wnt/ β-catenin and BMP/Smad1 signaling coordinates foregut and hindgut transcriptional programs. , Stevens ML , Chaturvedi P , Rankin SA , Rankin SA , Macdonald M, Jagannathan S, Yukawa M, Barski A, Zorn AM ., Development. April 1, 2017; 144 (7): 1283-1295.
E2a is necessary for Smad2/3-dependent transcription and the direct repression of lefty during gastrulation. , Wills AE , Baker JC ., Dev Cell. February 9, 2015; 32 (3): 345-57.
The Wnt/ JNK signaling target gene alcam is required for embryonic kidney development. , Cizelsky W, Tata A, Kühl M , Kühl SJ ., Development. May 1, 2014; 141 (10): 2064-74.
A genome-wide survey of maternal and embryonic transcripts during Xenopus tropicalis development. , Paranjpe SS, Jacobi UG, van Heeringen SJ, Veenstra GJ ., BMC Genomics. November 6, 2013; 14 762.
Tbx5 overexpression favors a first heart field lineage in murine embryonic stem cells and in Xenopus laevis embryos. , Herrmann F, Bundschu K, Kühl SJ , Kühl M ., Dev Dyn. December 1, 2011; 240 (12): 2634-45.
Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus. , White JT , Zhang B, Cerqueira DM, Tran U , Wessely O ., Development. June 1, 2010; 137 (11): 1863-73.
Comparative gene expression analysis and fate mapping studies suggest an early segregation of cardiogenic lineages in Xenopus laevis. , Gessert S, Kühl M ., Dev Biol. October 15, 2009; 334 (2): 395-408.
Combinatorial regulation of endothelial gene expression by ets and forkhead transcription factors. , De Val S, Chi NC, Meadows SM, Minovitsky S, Anderson JP, Harris IS, Ehlers ML, Agarwal P, Visel A, Xu SM, Pennacchio LA, Dubchak I, Krieg PA , Stainier DY, Black BL., Cell. December 12, 2008; 135 (6): 1053-64.
Sclerotomal origin of vascular smooth muscle cells and pericytes in the embryo. , Pouget C, Pottin K, Jaffredo T., Dev Biol. March 15, 2008; 315 (2): 437-47.
Molecular mechanisms of lymphatic vascular development. , Mäkinen T, Norrmén C, Petrova TV., Cell Mol Life Sci. August 1, 2007; 64 (15): 1915-29.
Foxc2 induces expression of MyoD and differentiation of the mouse myoblast cell line C2C12. , Omoteyama K, Mikami Y, Takagi M., Biochem Biophys Res Commun. July 6, 2007; 358 (3): 885-9.
Effects of lipopolysaccharide on intestinal P-glycoprotein expression and activity. , Moriguchi J, Kato R, Nakagawa M, Hirotani Y, Ijiri Y, Tanaka K., Eur J Pharmacol. June 22, 2007; 565 (1-3): 220-4.
The forkhead transcription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development. , Seo S, Fujita H, Nakano A, Kang M, Duarte A, Kume T., Dev Biol. June 15, 2006; 294 (2): 458-70.
Large-scale identification of genes implicated in kidney glomerulus development and function. , Takemoto M, He L, Norlin J, Patrakka J, Xiao Z, Petrova T, Bondjers C, Asp J, Wallgard E, Sun Y , Samuelsson T, Mostad P, Lundin S, Miura N, Sado Y, Alitalo K, Quaggin SE, Tryggvason K, Betsholtz C., EMBO J. March 8, 2006; 25 (5): 1160-74.
An atlas of differential gene expression during early Xenopus embryogenesis. , Pollet N , Muncke N, Verbeek B, Li Y, Fenger U, Delius H, Niehrs C ., Mech Dev. March 1, 2005; 122 (3): 365-439.
Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development. , Pohl BS, Knöchel W ., Gene. January 3, 2005; 344 21-32.
Foxc2 is expressed in developing lymphatic vessels and other tissues associated with lymphedema-distichiasis syndrome. , Dagenais SL, Hartsough RL, Erickson RP, Witte MH, Butler MG, Glover TW., Gene Expr Patterns. October 1, 2004; 4 (6): 611-9.
The forkhead genes, Foxc1 and Foxc2, regulate paraxial versus intermediate mesoderm cell fate. , Wilm B, James RG, Schultheiss TM, Hogan BL ., Dev Biol. July 1, 2004; 271 (1): 176-89.
Fox (forkhead) genes are involved in the dorso- ventral patterning of the Xenopus mesoderm. , El-Hodiri H , Bhatia-Dey N, Kenyon K , Ault K, Dirksen M, Jamrich M ., Int J Dev Biol. January 1, 2001; 45 (1): 265-71.
A fork head related multigene family is transcribed in Xenopus laevis embryos. , Lef J, Dege P, Scheucher M, Forsbach-Birk V, Clement JH, Knöchel W ., Int J Dev Biol. February 1, 1996; 40 (1): 245-53.