Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (317) GO Terms (11) Nucleotides (95) Proteins (63) Interactants (889) Wiki
XB-GENEPAGE-853971

Papers associated with cftr



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A functional CFTR-NBF1 is required for ROMK2-CFTR interaction., McNicholas CM, Nason MW, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME., Am J Physiol. November 1, 1997; 273 (5): F843-8.


Cystic fibrosis transmembrane conductance regulator activates water conductance in Xenopus oocytes., Schreiber R, Greger R, Nitschke R, Kunzelmann K., Pflugers Arch. November 1, 1997; 434 (6): 841-7.


Regulation of CFTR chloride channels by syntaxin and Munc18 isoforms., Naren AP, Nelson DJ, Xie W, Jovov B, Pevsner J, Bennett MK, Benos DJ, Quick MW, Kirk KL., Nature. November 20, 1997; 390 (6657): 302-5.


The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca2+ activated Cl- conductance of Xenopus oocytes., Kunzelmann K, Mall M, Briel M, Hipper A, Nitschke R, Ricken S, Greger R., Pflugers Arch. December 1, 1997; 435 (1): 178-81.


FLAG epitope positioned in an external loop preserves normal biophysical properties of CFTR., Schultz BD, Takahashi A, Liu C, Frizzell RA, Howard M., Am J Physiol. December 1, 1997; 273 (6): C2080-9.


Enhancement by baclofen of the Gs-coupled receptor-mediated cAMP production in Xenopus oocytes expressing rat brain cortex poly (A)+ RNA: a role of G-protein beta gamma subunits., Uezono Y, Ueda Y, Ueno S, Shibuya I, Yanagihara N, Toyohira Y, Yamashita H, Izumi F., Biochem Biophys Res Commun. December 18, 1997; 241 (2): 476-80.


No evidence for direct activation of the cystic fibrosis transmembrane conductance regulator by 8-cyclopentyl-1,3-dipropylxanthine., Kunzelmann K, Briel M, Schreiber R, Ricken S, Nitschke R, Greger R., Cell Physiol Biochem. January 1, 1998; 8 (4): 185-93.


Protease modulation of the activity of the epithelial sodium channel expressed in Xenopus oocytes., Chraïbi A, Vallet V, Firsov D, Hess SK, Horisberger JD., J Gen Physiol. January 1, 1998; 111 (1): 127-38.              


Function of the rat calcitonin receptors, C1a and C1b, expressed in Xenopus oocytes., Matsumoto M, Kaibara M, Uezono Y, Izumi F, Sumikawa K, Sexton PM, Taniyama K., Biochem Biophys Res Commun. January 26, 1998; 242 (3): 484-91.


Microtubule disruption inhibits AVT-stimulated Cl- secretion but not Na+ reabsorption in A6 cells., Morris RG, Tousson A, Benos DJ, Schafer JA., Am J Physiol. February 1, 1998; 274 (2): F300-14.


Microtubule disruption inhibits AVT-stimulated Cl - secretion but not Na + reabsorption in A6 cells., Morris RG, Tousson A, Benos DJ, Schafer JA., Am J Physiol Renal Physiol. February 1, 1998; 274 (2): F300-F314.


Vasoactive intestinal peptide, forskolin, and genistein increase apical CFTR trafficking in the rectal gland of the spiny dogfish, Squalus acanthias. Acute regulation of CFTR trafficking in an intact epithelium., Lehrich RW, Aller SG, Webster P, Marino CR, Forrest JN., J Clin Invest. February 15, 1998; 101 (4): 737-45.


A divergent CFTR homologue: highly regulated salt transport in the euryhaline teleost F. heteroclitus., Singer TD, Tucker SJ, Marshall WS, Higgins CF., Am J Physiol. March 1, 1998; 274 (3): C715-23.


Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore., Mansoura MK, Smith SS, Choi AD, Richards NW, Strong TV, Drumm ML, Collins FS, Dawson DC., Biophys J. March 1, 1998; 74 (3): 1320-32.


Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator., Schwiebert EM, Morales MM, Devidas S, Egan ME, Guggino WB., Proc Natl Acad Sci U S A. March 3, 1998; 95 (5): 2674-9.


Cl- transport by cystic fibrosis transmembrane conductance regulator (CFTR) contributes to the inhibition of epithelial Na+ channels (ENaCs) in Xenopus oocytes co-expressing CFTR and ENaC., Briel M, Greger R, Kunzelmann K., J Physiol. May 1, 1998; 508 ( Pt 3) 825-36.


Novel subunit composition of a renal epithelial KATP channel., Ruknudin A, Schulze DH, Sullivan SK, Lederer WJ, Welling PA., J Biol Chem. June 5, 1998; 273 (23): 14165-71.


Syntaxin 1A inhibits CFTR chloride channels by means of domain-specific protein-protein interactions., Naren AP, Quick MW, Collawn JF, Nelson DJ, Kirk KL., Proc Natl Acad Sci U S A. September 1, 1998; 95 (18): 10972-7.


Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator., Akabas MH., Biochemistry. September 1, 1998; 37 (35): 12233-40.


Characterization of 19 disease-associated missense mutations in the regulatory domain of the cystic fibrosis transmembrane conductance regulator., Vankeerberghen A, Wei L, Jaspers M, Cassiman JJ, Nilius B, Cuppens H., Hum Mol Genet. October 1, 1998; 7 (11): 1761-9.


Characterization of mutations located in exon 18 of the CFTR gene., Vankeerberghen A, Wei L, Teng H, Jaspers M, Cassiman JJ, Nilius B, Cuppens H., FEBS Lett. October 16, 1998; 437 (1-2): 1-4.


Cystic fibrosis transmembrane conductance regulator-associated ATP release is controlled by a chloride sensor., Jiang Q, Mak D, Devidas S, Schwiebert EM, Bragin A, Zhang Y, Skach WR, Guggino WB, Foskett JK, Engelhardt JF., J Cell Biol. November 2, 1998; 143 (3): 645-57.              


The second half of the cystic fibrosis transmembrane conductance regulator forms a functional chloride channel., Devidas S, Yue H, Guggino WB., J Biol Chem. November 6, 1998; 273 (45): 29373-80.


Phosphorylation site independent single R-domain mutations affect CFTR channel activity., Wei L, Vankeerberghen A, Cuppens H, Droogmans G, Cassiman JJ, Nilius B., FEBS Lett. November 13, 1998; 439 (1-2): 121-6.


A conserved region of the R domain of cystic fibrosis transmembrane conductance regulator is important in processing and function., Pasyk EA, Morin XK, Zeman P, Garami E, Galley K, Huan LJ, Wang Y, Bear CE., J Biol Chem. November 27, 1998; 273 (48): 31759-64.


Cloning, characterization, and functional expression of a CNP receptor regulating CFTR in the shark rectal gland., Aller SG, Lombardo ID, Bhanot S, Forrest JN., Am J Physiol. February 1, 1999; 276 (2): C442-9.


Melatonin receptor potentiation of cyclic AMP and the cystic fibrosis transmembrane conductance regulator ion channel., Nelson CS, Marino JL, Allen CN., J Pineal Res. March 1, 1999; 26 (2): 113-21.


Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C., Yamazaki J, Britton F, Collier ML, Horowitz B, Hume JR., Biophys J. April 1, 1999; 76 (4): 1972-87.


The cystic fibrosis transmembrane conductance regulator activates aquaporin 3 in airway epithelial cells., Schreiber R, Nitschke R, Greger R, Kunzelmann K., J Biol Chem. April 23, 1999; 274 (17): 11811-6.


The first-nucleotide binding domain of the cystic-fibrosis transmembrane conductance regulator is important for inhibition of the epithelial Na+ channel., Schreiber R, Hopf A, Mall M, Greger R, Kunzelmann K., Proc Natl Acad Sci U S A. April 27, 1999; 96 (9): 5310-5.


Structural and ionic determinants of 5-nitro-2-(3-phenylprophyl-amino)-benzoic acid block of the CFTR chloride channel., Walsh KB, Long KJ, Shen X., Br J Pharmacol. May 1, 1999; 127 (2): 369-76.


Cystic fibrosis transmembrane conductance regulator inhibits epithelial Na+ channels carrying Liddle's syndrome mutations., Hopf A, Schreiber R, Mall M, Greger R, Kunzelmann K., J Biol Chem. May 14, 1999; 274 (20): 13894-9.


Downregulation of epithelial sodium channel (ENaC) by CFTR co-expressed in Xenopus oocytes is independent of Cl- conductance., Chabot H, Vives MF, Dagenais A, Grygorczyk C, Berthiaume Y, Grygorczyk R., J Membr Biol. June 1, 1999; 169 (3): 175-88.


Syntaxin 1A inhibits regulated CFTR trafficking in xenopus oocytes., Peters KW, Qi J, Watkins SC, Frizzell RA., Am J Physiol. July 1, 1999; 277 (1): C174-80.


Dual effects of ADP and adenylylimidodiphosphate on CFTR channel kinetics show binding to two different nucleotide binding sites., Weinreich F, Riordan JR, Nagel G., J Gen Physiol. July 1, 1999; 114 (1): 55-70.                        


Secretory apical Cl- channels in A6 cells: possible control by cell Ca2+ and cAMP., Atia F, Zeiske W, van Driessche W., Pflugers Arch. August 1, 1999; 438 (3): 344-53.


Capacitance measurements reveal different pathways for the activation of CFTR., Weber WM, Cuppens H, Cassiman JJ, Clauss W, Van Driessche W., Pflugers Arch. September 1, 1999; 438 (4): 561-9.


Potent inhibition of the CFTR chloride channel by suramin., Bachmann A, Russ U, Quast U., Naunyn Schmiedebergs Arch Pharmacol. October 1, 1999; 360 (4): 473-6.


CFTR chloride channel regulation by an interdomain interaction., Naren AP, Cormet-Boyaka E, Fu J, Villain M, Blalock JE, Quick MW, Kirk KL., Science. October 15, 1999; 286 (5439): 544-8.


Cystic fibrosis transmembrane conductance regulator. Physical basis for lyotropic anion selectivity patterns., Smith SS, Steinle ED, Meyerhoff ME, Dawson DC., J Gen Physiol. December 1, 1999; 114 (6): 799-818.                


Syntaxin 1A is expressed in airway epithelial cells, where it modulates CFTR Cl(-) currents., Naren AP, Di A, Cormet-Boyaka E, Boyaka PN, McGhee JR, Zhou W, Akagawa K, Fujiwara T, Thome U, Engelhardt JF, Nelson DJ, Kirk KL., J Clin Invest. February 1, 2000; 105 (3): 377-86.


Direct comparison of NPPB and DPC as probes of CFTR expressed in Xenopus oocytes., Zhang ZR, Zeltwanger S, McCarty NA., J Membr Biol. May 1, 2000; 175 (1): 35-52.


Heterologous facilitation of G protein-activated K(+) channels by beta-adrenergic stimulation via cAMP-dependent protein kinase., Müllner C, Vorobiov D, Bera AK, Uezono Y, Yakubovich D, Frohnwieser-Steinecker B, Dascal N, Schreibmayer W., J Gen Physiol. May 1, 2000; 115 (5): 547-58.              


Epithelial sodium channels regulate cystic fibrosis transmembrane conductance regulator chloride channels in Xenopus oocytes., Jiang Q, Li J, Dubroff R, Ahn YJ, Foskett JK, Engelhardt J, Kleyman TR., J Biol Chem. May 5, 2000; 275 (18): 13266-74.


Suppressive interactions between mutations located in the two nucleotide binding domains of CFTR., Wei L, Vankeerberghen A, Jaspers M, Cassiman J, Nilius B, Cuppens H., FEBS Lett. May 12, 2000; 473 (2): 149-53.


Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMP-activated protein kinase., Hallows KR, Raghuram V, Kemp BE, Witters LA, Foskett JK., J Clin Invest. June 1, 2000; 105 (12): 1711-21.


Identification of the cystic fibrosis transmembrane conductance regulator domains that are important for interactions with ROMK2., Cahill P, Nason MW, Ambrose C, Yao TY, Thomas P, Egan ME., J Biol Chem. June 2, 2000; 275 (22): 16697-701.


Aquaporin 3 cloned from Xenopus laevis is regulated by the cystic fibrosis transmembrane conductance regulator., Schreiber R, Pavenstädt H, Greger R, Kunzelmann K., FEBS Lett. June 23, 2000; 475 (3): 291-5.


Interaction between permeation and gating in a putative pore domain mutant in the cystic fibrosis transmembrane conductance regulator., Zhang ZR, McDonough SI, McCarty NA., Biophys J. July 1, 2000; 79 (1): 298-313.


Effect of genistein on native epithelial tissue from normal individuals and CF patients and on ion channels expressed in Xenopus oocytes., Mall M, Wissner A, Seydewitz HH, Hübner M, Kuehr J, Brandis M, Greger R, Kunzelmann K., Br J Pharmacol. August 1, 2000; 130 (8): 1884-92.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???