Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (317) GO Terms (11) Nucleotides (95) Proteins (63) Interactants (889) Wiki
XB-GENEPAGE-853971

Papers associated with cftr



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Acute regulation of the SLC26A3 congenital chloride diarrhoea anion exchanger (DRA) expressed in Xenopus oocytes., Chernova MN, Jiang L, Shmukler BE, Schweinfest CW, Blanco P, Freedman SD, Stewart AK, Alper SL., J Physiol. May 15, 2003; 549 (Pt 1): 3-19.


Inhibition of ATP-sensitive K+ channels by substituted benzo[c]quinolizinium CFTR activators., Prost A, Dérand R, Gros L, Becq F, Vivaudou M., Biochem Pharmacol. August 1, 2003; 66 (3): 425-30.


Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating., Basso C, Vergani P, Nairn AC, Gadsby DC., J Gen Physiol. September 1, 2003; 122 (3): 333-48.                


[Regulation of the drug-sensitivity of anion channels via phosphorylation]., Yamazaki J, Kitamura K., Nihon Yakurigaku Zasshi. November 1, 2003; 122 Suppl 67P-70P.


Beta-adrenergic receptors couple to CFTR chloride channels of intercalated mitochondria-rich cells in the heterocellular toad skin epithelium., Larsen EH, Amstrup J, Willumsen NJ., Biochim Biophys Acta. December 30, 2003; 1618 (2): 140-52.


Imaging CFTR: a tail to tail dimer with a central pore., Schillers H, Shahin V, Albermann L, Schafer C, Oberleithner H., Cell Physiol Biochem. January 1, 2004; 14 (1-2): 1-10.


Protein kinase-independent activation of CFTR by phosphatidylinositol phosphates., Himmel B, Nagel G., EMBO Rep. January 1, 2004; 5 (1): 85-90.


Cross talk of cAMP and flavone in regulation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel and Na+/K+/2Cl- cotransporter in renal epithelial A6 cells., Niisato N, Nishino H, Nishio K, Marunaka Y., Biochem Pharmacol. February 15, 2004; 67 (4): 795-801.


Assembly and trafficking of a multiprotein ROMK (Kir 1.1) channel complex by PDZ interactions., Yoo D, Flagg TP, Olsen O, Raghuram V, Foskett JK, Welling PA., J Biol Chem. February 20, 2004; 279 (8): 6863-73.


Steady-state interactions of glibenclamide with CFTR: evidence for multiple sites in the pore., Zhang ZR, Zeltwanger S, McCarty NA., J Membr Biol. May 1, 2004; 199 (1): 15-28.


Control of epithelial ion transport by Cl- and PDZ proteins., Schreiber R, Boucherot A, Mürle B, Sun J, Kunzelmann K., J Membr Biol. May 15, 2004; 199 (2): 85-98.


Dynamic control of cystic fibrosis transmembrane conductance regulator Cl(-)/HCO3(-) selectivity by external Cl(-)., Shcheynikov N, Kim KH, Kim KM, Dorwart MR, Ko SB, Goto H, Naruse S, Thomas PJ, Muallem S., J Biol Chem. May 21, 2004; 279 (21): 21857-65.


Cystic fibrosis transmembrane conductance regulator differentially regulates human and mouse epithelial sodium channels in Xenopus oocytes., Yan W, Samaha FF, Ramkumar M, Kleyman TR, Rubenstein RC., J Biol Chem. May 28, 2004; 279 (22): 23183-92.


Identification and characterization of evolutionarily conserved pufferfish, zebrafish, and frog orthologs of GASZ., Yan W, Ma L, Zilinski CA, Matzuk MM., Biol Reprod. June 1, 2004; 70 (6): 1619-25.  


Time-dependent interactions of glibenclamide with CFTR: kinetically complex block of macroscopic currents., Zhang ZR, Cui G, Zeltwanger S, McCarty NA., J Membr Biol. October 1, 2004; 201 (3): 139-55.


Stimulation of Xenopus P2Y1 receptor activates CFTR in A6 cells., Guerra L, Favia M, Fanelli T, Calamita G, Svetlo M, Bagorda A, Jacobson KA, Reshkin SJ, Casavola V., Pflugers Arch. October 1, 2004; 449 (1): 66-75.


Involvement of G protein betagamma-subunits in diverse signaling induced by G(i/o)-coupled receptors: study using the Xenopus oocyte expression system., Uezono Y, Kaibara M, Murasaki O, Taniyama K., Am J Physiol Cell Physiol. October 1, 2004; 287 (4): C885-94.


Potentiation of effect of PKA stimulation of Xenopus CFTR by activation of PKC: role of NBD2., Chen Y, Button B, Altenberg GA, Reuss L., Am J Physiol Cell Physiol. November 1, 2004; 287 (5): C1436-44.


Inhibition of CFTR channels by a peptide toxin of scorpion venom., Fuller MD, Zhang ZR, Cui G, Kubanek J, McCarty NA., Am J Physiol Cell Physiol. November 1, 2004; 287 (5): C1328-41.


Mechanism of activation of Xenopus CFTR by stimulation of PKC., Chen Y, Altenberg GA, Reuss L., Am J Physiol Cell Physiol. November 1, 2004; 287 (5): C1256-63.


ClC-5 chloride channel alters expression of the epithelial sodium channel (ENaC)., Mo L, Wills NK., J Membr Biol. November 1, 2004; 202 (1): 21-37.


CFTR: a cysteine at position 338 in TM6 senses a positive electrostatic potential in the pore., Liu X, Zhang ZR, Fuller MD, Billingsley J, McCarty NA, Dawson DC., Biophys J. December 1, 2004; 87 (6): 3826-41.


Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain., Csanády L, Chan KW, Nairn AC, Gadsby DC., J Gen Physiol. January 1, 2005; 125 (1): 43-55.              


Functional interaction between CFTR and Cx45 gap junction channels expressed in oocytes., Kotsias BA, Peracchia C., J Membr Biol. February 1, 2005; 203 (3): 143-50.


Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA., Csanády L, Seto-Young D, Chan KW, Cenciarelli C, Angel BB, Qin J, McLachlin DT, Krutchinsky AN, Chait BT, Nairn AC, Gadsby DC., J Gen Physiol. February 1, 2005; 125 (2): 171-86.                  


CFTR fails to inhibit the epithelial sodium channel ENaC expressed in Xenopus laevis oocytes., Nagel G, Barbry P, Chabot H, Brochiero E, Hartung K, Grygorczyk R., J Physiol. May 1, 2005; 564 (Pt 3): 671-82.


4-Chlorobenzo[F]isoquinoline (CBIQ), a novel activator of CFTR and DeltaF508 CFTR., Murthy M, Pedemonte N, MacVinish L, Galietta L, Cuthbert A., Eur J Pharmacol. June 1, 2005; 516 (2): 118-24.


Synergic action of insulin and genistein on Na+/K+/2Cl- cotransporter in renal epithelium., Ueda-Nishimura T, Niisato N, Miyazaki H, Naito Y, Yoshida N, Yoshikawa T, Nishino H, Marunaka Y., Biochem Biophys Res Commun. July 15, 2005; 332 (4): 1042-52.


Cl- interference with the epithelial Na+ channel ENaC., Bachhuber T, König J, Voelcker T, Mürle B, Schreiber R, Kunzelmann K., J Biol Chem. September 9, 2005; 280 (36): 31587-94.


Inhibition of ClC-2 chloride channels by a peptide component or components of scorpion venom., Thompson CH, Fields DM, Olivetti PR, Fuller MD, Zhang ZR, Kubanek J, McCarty NA., J Membr Biol. November 1, 2005; 208 (1): 65-76.


An energy-dependent maturation step is required for release of the cystic fibrosis transmembrane conductance regulator from early endoplasmic reticulum biosynthetic machinery., Oberdorf J, Pitonzo D, Skach WR., J Biol Chem. November 18, 2005; 280 (46): 38193-202.


The block of CFTR by scorpion venom is state-dependent., Fuller MD, Zhang ZR, Cui G, McCarty NA., Biophys J. December 1, 2005; 89 (6): 3960-75.


Anion exchangers in flux: functional differences between human and mouse SLC26A6 polypeptides., Alper SL, Stewart AK, Chernova MN, Zolotarev AS, Clark JS, Vandorpe DH., Novartis Found Symp. January 1, 2006; 273 107-19; discussion 119-25, 261-4.


Regulatory interaction between CFTR and the SLC26 transporters., Shcheynikov N, Ko SB, Zeng W, Choi JY, Dorwart MR, Thomas PJ, Muallem S., Novartis Found Symp. January 1, 2006; 273 177-86; discussion 186-92, 261-4.


The CLIC1 chloride channel is regulated by the cystic fibrosis transmembrane conductance regulator when expressed in Xenopus oocytes., Edwards JC., J Membr Biol. January 1, 2006; 213 (1): 39-46.


Interplay between cystic fibrosis transmembrane regulator and gap junction channels made of connexins 45, 40, 32 and 50 expressed in oocytes., Kotsias BA, Salim M, Peracchia LL, Peracchia C., J Membr Biol. January 1, 2006; 214 (1): 1-8.


CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney., Lu M, Leng Q, Egan ME, Caplan MJ, Boulpaep EL, Giebisch GH, Hebert SC., J Clin Invest. March 1, 2006; 116 (3): 797-807.


Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride., Ratner MA, Decker SE, Aller SG, Weber G, Forrest JN., J Exp Zool A Comp Exp Biol. March 1, 2006; 305 (3): 259-67.


Stable knockdown of CFTR establishes a role for the channel in P2Y receptor-stimulated anion secretion., Palmer ML, Lee SY, Carlson D, Fahrenkrug S, O'Grady SM., J Cell Physiol. March 1, 2006; 206 (3): 759-70.


Mercury and zinc differentially inhibit shark and human CFTR orthologues: involvement of shark cysteine 102., Weber GJ, Mehr AP, Sirota JC, Aller SG, Decker SE, Dawson DC, Forrest JN., Am J Physiol Cell Physiol. March 1, 2006; 290 (3): C793-801.


Variable reactivity of an engineered cysteine at position 338 in cystic fibrosis transmembrane conductance regulator reflects different chemical states of the thiol., Liu X, Alexander C, Serrano J, Borg E, Dawson DC., J Biol Chem. March 24, 2006; 281 (12): 8275-85.


NHE3 inhibits PKA-dependent functional expression of CFTR by NHERF2 PDZ interactions., Favia M, Fanelli T, Bagorda A, Di Sole F, Reshkin SJ, Suh PG, Guerra L, Casavola V., Biochem Biophys Res Commun. August 25, 2006; 347 (2): 452-9.


CFTR: Ligand exchange between a permeant anion ([Au(CN)2]-) and an engineered cysteine (T338C) blocks the pore., Serrano JR, Liu X, Borg ER, Alexander CS, Shaw CF, Dawson DC., Biophys J. September 1, 2006; 91 (5): 1737-48.


Shark rectal gland vasoactive intestinal peptide receptor: cloning, functional expression, and regulation of CFTR chloride channels., Bewley MS, Pena JT, Plesch FN, Decker SE, Weber GJ, Forrest JN., Am J Physiol Regul Integr Comp Physiol. October 1, 2006; 291 (4): R1157-64.


In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer., Mense M, Vergani P, White DM, Altberg G, Nairn AC, Gadsby DC., EMBO J. October 18, 2006; 25 (20): 4728-39.


Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle., Csanády L, Nairn AC, Gadsby DC., J Gen Physiol. November 1, 2006; 128 (5): 523-33.            


2,3-butanedione monoxime affects cystic fibrosis transmembrane conductance regulator channel function through phosphorylation-dependent and phosphorylation-independent mechanisms: the role of bilayer material properties., Artigas P, Al'aref SJ, Hobart EA, Díaz LF, Sakaguchi M, Straw S, Andersen OS., Mol Pharmacol. December 1, 2006; 70 (6): 2015-26.


Abnormal regulatory interactions of I148T-CFTR and the epithelial Na+ channel in Xenopus oocytes., Suaud L, Yan W, Rubenstein RC., Am J Physiol Cell Physiol. January 1, 2007; 292 (1): C603-11.


An extract from the medicinal plant Phyllanthus acidus and its isolated compounds induce airway chloride secretion: A potential treatment for cystic fibrosis., Sousa M, Ousingsawat J, Seitz R, Puntheeranurak S, Regalado A, Schmidt A, Grego T, Jansakul C, Amaral MD, Schreiber R, Kunzelmann K., Mol Pharmacol. January 1, 2007; 71 (1): 366-76.


Functional characterization of a novel CFTR mutation P67S identified in a patient with atypical cystic fibrosis., Kraus C, Reis A, Naehrlich L, Dötsch J, Korbmacher C, Rauh R., Cell Physiol Biochem. January 1, 2007; 19 (5-6): 239-48.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???