Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (40) GO Terms (5) Nucleotides (1717) Proteins (109) Interactants (759) Wiki
XB-GENEPAGE-485945

Papers associated with tpm1



???displayGene.coCitedPapers???
8 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Time-resolved quantitative proteomic analysis of the developing Xenopus otic vesicle reveals putative congenital hearing loss candidates., Baxi AB, Nemes P, Moody SA., iScience. September 15, 2023; 26 (9): 107665.                          


Construction of Whole Genomes from Scaffolds Using Single Cell Strand-Seq Data., Hills M, Falconer E, O'Neill K, Sanders AD, Howe K, Guryev V, Lansdorp PM., Int J Mol Sci. March 31, 2021; 22 (7):                       


Transcriptomic analysis identifies early cellular and molecular events by which estrogen disrupts testis differentiation and causes feminization in Xenopus laevis., Li Y, Shen Y, Li J, Cai M, Qin Z., Aquat Toxicol. September 1, 2020; 226 105557.


Robust identification of Ptbp1-dependent splicing events by a junction-centric approach in Xenopus laevis., Noiret M, Méreau A, Angrand G, Bervas M, Gautier-Courteille C, Legagneux V, Deschamps S, Lerivray H, Viet J, Hardy S, Paillard L, Audic Y., Dev Biol. June 15, 2017; 426 (2): 449-459.            


Spatiotemporally Controlled Mechanical Cues Drive Progenitor Mesenchymal-to-Epithelial Transition Enabling Proper Heart Formation and Function., Jackson TR, Kim HY, Balakrishnan UL, Stuckenholz C, Davidson LA, Davidson LA., Curr Biol. May 8, 2017; 27 (9): 1326-1335.                            


A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors., Bryant DM, Johnson K, DiTommaso T, Tickle T, Couger MB, Payzin-Dogru D, Lee TJ, Leigh ND, Kuo TH, Davis FG, Bateman J, Bryant S, Guzikowski AR, Tsai SL, Coyne S, Ye WW, Freeman RM, Peshkin L, Tabin CJ, Regev A, Haas BJ, Whited JL., Cell Rep. January 17, 2017; 18 (3): 762-776.                          


Identification of Plasmodium falciparum Translation Initiation eIF2β Subunit: Direct Interaction with Protein Phosphatase Type 1., Tellier G, Lenne A, Cailliau-Maggio K, Cabezas-Cruz A, Valdés JJ, Martoriati A, Aliouat el M, Gosset P, Delaire B, Fréville A, Pierrot C, Khalife J., Front Microbiol. May 26, 2016; 7 777.                  


The Lhx9-integrin pathway is essential for positioning of the proepicardial organ., Tandon P, Wilczewski CM, Williams CE, Conlon FL., Development. March 1, 2016; 143 (5): 831-40.                                    


Ventricular cell fate can be specified until the onset of myocardial differentiation., Caporilli S, Latinkic BV., Mech Dev. February 1, 2016; 139 31-41.                        


A posttranscriptional mechanism that controls Ptbp1 abundance in the Xenopus epidermis., Méreau A, Anquetil V, Lerivray H, Viet J, Schirmer C, Audic Y, Legagneux V, Hardy S, Paillard L., Mol Cell Biol. February 1, 2015; 35 (4): 758-68.              


Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression., Shi J, Zhao Y, Galati D, Winey M, Klymkowsky MW., Dev Biol. November 15, 2014; 395 (2): 287-98.                    


Left-right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions., Vandenberg LN, Blackiston DJ, Rea AC, Dore TM, Levin M., Int J Dev Biol. January 1, 2014; 58 (10-12): 799-809.                


SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton., Langdon Y, Tandon P, Paden E, Duddy J, Taylor JM, Conlon FL., Development. March 1, 2012; 139 (5): 948-57.                


Skeletal muscle differentiation and fusion are regulated by the BAR-containing Rho-GTPase-activating protein (Rho-GAP), GRAF1., Doherty JT, Lenhart KC, Cameron MV, Mack CP, Conlon FL, Taylor JM., J Biol Chem. July 22, 2011; 286 (29): 25903-21.                    


Uracil DNA N-glycosylase promotes assembly of human centromere protein A., Zeitlin SG, Chapados BR, Baker NM, Tai C, Slupphaug G, Wang JY., PLoS One. March 2, 2011; 6 (3): e17151.                        


The BMP pathway acts to directly regulate Tbx20 in the developing heart., Mandel EM, Kaltenbrun E, Callis TE, Zeng XX, Marques SR, Yelon D, Wang DZ, Conlon FL., Development. June 1, 2010; 137 (11): 1919-29.                  


Functional characterization of two CITED3 homologs (gcCITED3a and gcCITED3b) in the hypoxia-tolerant grass carp, Ctenopharyngodon idellus., Ng PK, Chiu SK, Kwong TF, Yu RM, Wong MM, Kong RY., BMC Mol Biol. November 3, 2009; 10 101.              


Analysis of splicing patterns by pyrosequencing., Méreau A, Anquetil V, Cibois M, Noiret M, Primot A, Vallée A, Paillard L., Nucleic Acids Res. October 1, 2009; 37 (19): e126.            


Cardiac differentiation in Xenopus requires the cyclin-dependent kinase inhibitor, p27Xic1., Movassagh M, Philpott A., Cardiovasc Res. August 1, 2008; 79 (3): 436-47.                                


Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline., Christine KS, Conlon FL., Dev Cell. April 1, 2008; 14 (4): 616-23.                                


The myocardin-related transcription factor, MASTR, cooperates with MyoD to activate skeletal muscle gene expression., Meadows SM, Warkman AS, Salanga MC, Small EM, Krieg PA., Proc Natl Acad Sci U S A. February 5, 2008; 105 (5): 1545-50.        


SHP-2 is required for the maintenance of cardiac progenitors., Langdon YG, Goetz SC, Berg AE, Swanik JT, Conlon FL., Development. November 1, 2007; 134 (22): 4119-30.    


A novel IgA-like immunoglobulin in the reptile Eublepharis macularius., Deza FG, Espinel CS, Beneitez JV., Dev Comp Immunol. January 1, 2007; 31 (6): 596-605.


Transcription enhancer factor-1-dependent expression of the alpha-tropomyosin gene in the three muscle cell types., Pasquet S, Naye F, Faucheux C, Bronchain O, Chesneau A, Thiébaud P, Thézé N., J Biol Chem. November 10, 2006; 281 (45): 34406-20.


Differential expression of tropomyosin during segmental heart development in Mexican axolotl., Zajdel RW, McLean MD, Denz CR, Dube S, Thurston HL, Poiesz BJ, Dube DK., J Cell Biochem. October 15, 2006; 99 (3): 952-65.


Identification of IgF, a hinge-region-containing Ig class, and IgD in Xenopus tropicalis., Zhao Y, Pan-Hammarström Q, Yu S, Yu S, Wertz N, Zhang X, Li N, Butler JE, Hammarström L., Proc Natl Acad Sci U S A. August 8, 2006; 103 (32): 12087-92.                                  


TBX5 is required for embryonic cardiac cell cycle progression., Goetz SC, Brown DD, Conlon FL., Development. July 1, 2006; 133 (13): 2575-84.                


Anti-sense-mediated inhibition of expression of the novel striated tropomyosin isoform TPM1kappa disrupts myofibril organization in embryonic axolotl hearts., Zajdel RW, Denz CR, Narshi A, Dube S, Dube DK., J Cell Biochem. July 1, 2005; 95 (4): 840-8.


Tbx5 and Tbx20 act synergistically to control vertebrate heart morphogenesis., Brown DD, Martz SN, Binder O, Goetz SC, Price BM, Smith JC, Conlon FL., Development. February 1, 2005; 132 (3): 553-63.                


Effects of 17beta-estradiol, nonylphenol, and bisphenol-A on developing Xenopus laevis embryos., Sone K, Hinago M, Kitayama A, Morokuma J, Ueno N, Watanabe H, Iguchi T., Gen Comp Endocrinol. September 15, 2004; 138 (3): 228-36.              


Xenopus muscle development: from primary to secondary myogenesis., Chanoine C, Hardy S., Dev Dyn. January 1, 2003; 226 (1): 12-23.  


Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor., Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN., Cell. June 29, 2001; 105 (7): 851-62.  


Confocal imaging of early heart development in Xenopus laevis., Kolker SJ, Tajchman U, Weeks DL., Dev Biol. February 1, 2000; 218 (1): 64-73.              


A novel tropomyosin isoform encoded by the Xenopus laevis alpha-TM gene is expressed in the brain., Gaillard C, Thézé N, Lerivray H, Hardy S, Lepetit D, Thiébaud P., Gene. January 30, 1998; 207 (2): 235-9.


Alpha-tropomyosin gene expression in Xenopus laevis: differential promoter usage during development and controlled expression by myogenic factors., Gaillard C, Thézé N, Hardy S, Allo MR, Ferrasson E, Thiébaud P., Dev Genes Evol. January 1, 1998; 207 (7): 435-45.


Isoform transition of contractile proteins related to muscle remodeling with an axial gradient during metamorphosis in Xenopus laevis., Nishikawa A, Hayashi H., Dev Biol. September 1, 1994; 165 (1): 86-94.                      


Molecular cloning, sequencing and expression of an isoform of cardiac alpha-tropomyosin from the Mexican axolotl (Ambystoma mexicanum)., Luque EA, Lemanski LF, Dube DK., Biochem Biophys Res Commun. August 30, 1994; 203 (1): 319-25.


Differential regulation of skeletal muscle myosin-II and brush border myosin-I enzymology and mechanochemistry by bacterially produced tropomyosin isoforms., Fanning AS, Wolenski JS, Mooseker MS, Izant JG., Cell Motil Cytoskeleton. January 1, 1994; 29 (1): 29-45.


Isolation and sequence of a cDNA coding for the immunoglobulin mu chain of the sheep., Patri S, Nau F., Mol Immunol. January 1, 1992; 29 (7-8): 829-36.


Monoclonal antibodies against chicken tropomyosin isoforms: production, characterization, and application., Lin JJ, Chou CS, Lin JL., Hybridoma. January 1, 1985; 4 (3): 223-42.

???pagination.result.page??? 1