Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (140) GO Terms (47) Nucleotides (136) Proteins (40) Interactants (1400) Wiki
XB-GENEPAGE-5858980

Papers associated with wnt11b



???displayGene.coCitedPapers???
30 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The early dorsal signal in vertebrate embryos requires endolysosomal membrane trafficking., Azbazdar Y, De Robertis EM., Bioessays. January 1, 2024; 46 (1): e2300179.                            


Dorsal lip maturation and initial archenteron extension depend on Wnt11 family ligands., Van Itallie ES, Field CM, Mitchison TJ, Kirschner MW., Dev Biol. January 1, 2023; 493 67-79.                                                      


Maternal Wnt11b regulates cortical rotation during Xenopus axis formation: analysis of maternal-effect wnt11b mutants., Houston DW, Elliott KL, Coppenrath K, Wlizla M, Horb ME., Development. September 1, 2022; 149 (17):                                   


Lysosomal degradation of the maternal dorsal determinant Hwa safeguards dorsal body axis formation., Zhu X, Wang P, Wei J, Li Y, Zhai J, Zheng T, Tao Q, Tao Q., EMBO Rep. December 6, 2021; 22 (12): e53185.


Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates., Bright AR, van Genesen S, Li Q, Grasso A, Frölich S, van der Sande M, van Heeringen SJ, Veenstra GJC., EMBO J. May 3, 2021; 40 (9): e104913.                        


Modeling endoderm development and disease in Xenopus., Edwards NA, Zorn AM., Curr Top Dev Biol. January 1, 2021; 145 61-90.


A dual function of FGF signaling in Xenopus left-right axis formation., Schneider I, Kreis J, Schweickert A, Blum M, Vick P., Development. May 10, 2019; 146 (9):                               


Transcriptome profiling reveals male- and female-specific gene expression pattern and novel gene candidates for the control of sex determination and gonad development in Xenopus laevis., Piprek RP, Damulewicz M, Tassan JP, Kloc M, Kubiak JZ., Dev Genes Evol. May 1, 2019; 229 (2-3): 53-72.        


Maternal Huluwa dictates the embryonic body axis through β-catenin in vertebrates., Yan L, Chen J, Zhu X, Sun J, Wu X, Shen W, Zhang W, Tao Q, Tao Q, Meng A., Science. November 23, 2018; 362 (6417):


Tbx2 is required for the suppression of mesendoderm during early Xenopus development., Teegala S, Chauhan R, Lei E, Weinstein DC., Dev Dyn. July 1, 2018; 247 (7): 903-913.                


Regulation of neural crest development by the formin family protein Daam1., Ossipova O, Kerney R, Saint-Jeannet JP, Sokol SY., Genesis. June 1, 2018; 56 (6-7): e23108.              


Asymmetric distribution of biomolecules of maternal origin in the Xenopus laevis egg and their impact on the developmental plan., Sindelka R, Abaffy P, Qu Y, Tomankova S, Sidova M, Naraine R, Kolar M, Peuchen E, Sun L, Dovichi N, Kubista M., Sci Rep. May 29, 2018; 8 (1): 8315.                


A Conserved Role of the Unconventional Myosin 1d in Laterality Determination., Tingler M, Kurz S, Maerker M, Ott T, Fuhl F, Schweickert A, LeBlanc-Straceski JM, Noselli S, Blum M., Curr Biol. March 5, 2018; 28 (5): 810-816.e3.                


Neural crest development in Xenopus requires Protocadherin 7 at the lateral neural crest border., Bradley RS., Mech Dev. February 1, 2018; 149 41-52.                


Role of maternal Xenopus syntabulin in germ plasm aggregation and primordial germ cell specification., Oh D, Houston DW., Dev Biol. December 15, 2017; 432 (2): 237-247.                      


Frizzled-7 is required for Xenopus heart development., Abu-Elmagd M, Mulvaney J, Wheeler GN., Biol Open. December 15, 2017; 6 (12): 1861-1868.            


The POZ-ZF transcription factor Znf131 is implicated as a regulator of Kaiso-mediated biological processes., Robinson SC, Donaldson-Kabwe NS, Dvorkin-Gheva A, Longo J, He L, Daniel JM., Biochem Biophys Res Commun. November 4, 2017; 493 (1): 416-421.


Maternal Dead-end 1 promotes translation of nanos1 by binding the eIF3 complex., Aguero T, Jin Z, Chorghade S, Kalsotra A, King ML, Yang J., Development. October 15, 2017; 144 (20): 3755-3765.                        


High variability of expression profiles of homeologous genes for Wnt, Hh, Notch, and Hippo signaling pathways in Xenopus laevis., Michiue T, Yamamoto T, Yasuoka Y, Goto T, Ikeda T, Nagura K, Nakayama T, Taira M, Kinoshita T., Dev Biol. June 15, 2017; 426 (2): 270-290.                  


A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs., Charney RM, Paraiso KD, Blitz IL, Cho KWY., Semin Cell Dev Biol. June 1, 2017; 66 12-24.    


The CapZ interacting protein Rcsd1 is required for cardiogenesis downstream of Wnt11a in Xenopus laevis., Hempel A, Kühl SJ, Rothe M, Rao Tata P, Sirbu IO, Vainio SJ, Kühl M., Dev Biol. April 1, 2017; 424 (1): 28-39.                                  


High-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration., Owens DA, Butler AM, Aguero TH, Newman KM, Van Booven D, King ML., Development. January 15, 2017; 144 (2): 292-304.                                                                                        


Genome evolution in the allotetraploid frog Xenopus laevis., Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS., Nature. October 20, 2016; 538 (7625): 336-343.                              


Wnt proteins can direct planar cell polarity in vertebrate ectoderm., Chu CW, Sokol SY., Elife. September 23, 2016; 5             


Formation of a "Pre-mouth Array" from the Extreme Anterior Domain Is Directed by Neural Crest and Wnt/PCP Signaling., Jacox L, Chen J, Rothman A, Lathrop-Marshall H, Sive H., Cell Rep. August 2, 2016; 16 (5): 1445-1455.            


Regulation of distinct branches of the non-canonical Wnt-signaling network in Xenopus dorsal marginal zone explants., Wallkamm V, Rahm K, Schmoll J, Kaufmann LT, Brinkmann E, Schunk J, Kraft B, Wedlich D, Gradl D., BMC Biol. July 5, 2016; 14 55.                


Lens regeneration from the cornea requires suppression of Wnt/β-catenin signaling., Hamilton PW, Sun Y, Henry JJ., Exp Eye Res. April 1, 2016; 145 206-215.          


A gradient of maternal Bicaudal-C controls vertebrate embryogenesis via translational repression of mRNAs encoding cell fate regulators., Park S, Blaser S, Marchal MA, Houston DW, Sheets MD., Development. March 1, 2016; 143 (5): 864-71.          


PLD1 regulates Xenopus convergent extension movements by mediating Frizzled7 endocytosis for Wnt/PCP signal activation., Lee H, Lee SJ, Kim GH, Yeo I, Han JK., Dev Biol. March 1, 2016; 411 (1): 38-49.                          


A novel role for Ascl1 in the regulation of mesendoderm formation via HDAC-dependent antagonism of VegT., Gao L, Zhu X, Chen G, Ma X, Zhang Y, Zhang Y, Khand AA, Shi H, Gu F, Lin H, Chen Y, Zhang H, He L, Tao Q, Tao Q., Development. February 1, 2016; 143 (3): 492-503.                            


Molecular asymmetry in the 8-cell stage Xenopus tropicalis embryo described by single blastomere transcript sequencing., De Domenico E, Owens ND, Grant IM, Gomes-Faria R, Gilchrist MJ., Dev Biol. December 15, 2015; 408 (2): 252-68.          


Sebox regulates mesoderm formation in early amphibian embryos., Chen G, Tan R, Tao Q, Tao Q., Dev Dyn. November 1, 2015; 244 (11): 1415-26.              


Sulf1 has ligand-dependent effects on canonical and non-canonical Wnt signalling., Fellgett SW, Maguire RJ, Pownall ME., J Cell Sci. April 1, 2015; 128 (7): 1408-21.                        


The alternative splicing regulator Tra2b is required for somitogenesis and regulates splicing of an inhibitory Wnt11b isoform., Dichmann DS, Walentek P, Harland RM., Cell Rep. February 3, 2015; 10 (4): 527-36.                    


Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development., Buisson I, Le Bouffant R, Futel M, Riou JF, Umbhauer M., Dev Biol. January 15, 2015; 397 (2): 175-90.                            


Genome-wide view of TGFβ/Foxh1 regulation of the early mesendoderm program., Chiu WT, Charney Le R, Blitz IL, Fish MB, Li Y, Biesinger J, Xie X, Cho KW., Development. December 1, 2014; 141 (23): 4537-47.                                  


Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers., Plouhinec JL, Roche DD, Pegoraro C, Figueiredo AL, Maczkowiak F, Brunet LJ, Milet C, Vert JP, Pollet N, Harland RM, Monsoro-Burq AH., Dev Biol. February 15, 2014; 386 (2): 461-72.                                            


β-Arrestin 1 mediates non-canonical Wnt pathway to regulate convergent extension movements., Kim GH, Park EC, Lee H, Lee H, Na HJ, Choi SC, Han JK., Biochem Biophys Res Commun. May 31, 2013; 435 (2): 182-7.                  


Wnt11b is involved in cilia-mediated symmetry breakage during Xenopus left-right development., Walentek P, Schneider I, Schweickert A, Blum M., PLoS One. January 1, 2013; 8 (9): e73646.              


Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos., Pegoraro C, Monsoro-Burq AH., Wiley Interdiscip Rev Dev Biol. January 1, 2013; 2 (2): 247-59.      


Wnt-11 and Fz7 reduce cell adhesion in convergent extension by sequestration of PAPC and C-cadherin., Kraft B, Berger CD, Wallkamm V, Steinbeisser H, Wedlich D., J Cell Biol. August 20, 2012; 198 (4): 695-709.                  


A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus., Szenker E, Lacoste N, Almouzni G., Cell Rep. June 28, 2012; 1 (6): 730-40.                                      


Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation., Zhang X, Abreu JG, Yokota C, MacDonald BT, Singh S, Coburn KL, Cheong SM, Zhang MM, Ye QZ, Hang HC, Steen H, He X., Cell. June 22, 2012; 149 (7): 1565-77.                      


Asymmetric Localization of CK2α During Xenopus Oogenesis., Imbrie GA, Wu H, Seldin DC, Dominguez I., Hum Genet Embryol. May 5, 2012; Suppl 4 (1): 11328.            


Functional conservation of Nematostella Wnts in canonical and noncanonical Wnt-signaling., Rigo-Watermeier T, Kraft B, Ritthaler M, Wallkamm V, Holstein T, Wedlich D., Biol Open. January 15, 2012; 1 (1): 43-51.            


Agonistic and antagonistic roles for TNIK and MINK in non-canonical and canonical Wnt signalling., Mikryukov A, Moss T., PLoS One. January 1, 2012; 7 (9): e43330.                


Cortical rotation and messenger RNA localization in Xenopus axis formation., Houston DW., Wiley Interdiscip Rev Dev Biol. January 1, 2012; 1 (3): 371-88.        


Pronephric tubulogenesis requires Daam1-mediated planar cell polarity signaling., Miller RK, Canny SG, Jang CW, Cho K, Ji H, Wagner DS, Jones EA, Habas R, McCrea PD., J Am Soc Nephrol. September 1, 2011; 22 (9): 1654-64.


Different requirements for GATA factors in cardiogenesis are mediated by non-canonical Wnt signaling., Afouda BA, Hoppler S., Dev Dyn. March 1, 2011; 240 (3): 649-62.  


The nephrogenic potential of the transcription factors osr1, osr2, hnf1b, lhx1 and pax8 assessed in Xenopus animal caps., Drews C, Senkel S, Ryffel GU., BMC Dev Biol. January 31, 2011; 11 5.              

???pagination.result.page??? 1 2 3 ???pagination.result.next???