Results 1 - 40 of 40 results
Engagement of Foxh1 in chromatin regulation revealed by protein interactome analyses. , Zhou JJ , Pham PD, Han H, Wang W, Cho KWY., Dev Growth Differ. August 1, 2022; 64 (6): 297-305.
Generation of a FOXH1 homozygous knockout human embryonic stem cell line by CRISPR/Cas9 system. , Zhang T, Huang W, Xue X., Stem Cell Res. December 10, 2020; 50 102121.
Chromatin accessibility and histone acetylation in the regulation of competence in early development. , Esmaeili M, Blythe SA , Tobias JW, Zhang K, Yang J , Klein PS ., Dev Biol. June 1, 2020; 462 (1): 20-35.
Xenbase: deep integration of GEO & SRA RNA-seq and ChIP-seq data in a model organism database. , Fortriede JD , Pells TJ , Chu S , Chaturvedi P , Wang D, Fisher ME , Fisher ME , James-Zorn C , Wang Y, Nenni MJ , Burns KA , Lotay VS , Ponferrada VG , Karimi K , Zorn AM , Vize PD ., Nucleic Acids Res. January 8, 2020; 48 (D1): D776-D782.
Repression of Inappropriate Gene Expression in the Vertebrate Embryonic Ectoderm. , Reich S, Weinstein DC ., Genes (Basel). November 6, 2019; 10 (11):
Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals. , Gentsch GE , Spruce T, Owens NDL, Smith JC ., Nat Commun. September 19, 2019; 10 (1): 4269.
Evolution of cis-regulatory modules for the head organizer gene goosecoid in chordates: comparisons between Branchiostoma and Xenopus. , Yasuoka Y, Tando Y, Kubokawa K, Taira M ., Zoological Lett. August 2, 2019; 5 27.
Endodermal Maternal Transcription Factors Establish Super-Enhancers during Zygotic Genome Activation. , Paraiso KD , Blitz IL , Coley M, Cheung J, Sudou N , Taira M , Cho KWY ., Cell Rep. June 4, 2019; 27 (10): 2962-2977.e5.
A catalog of Xenopus tropicalis transcription factors and their regional expression in the early gastrula stage embryo. , Blitz IL , Paraiso KD , Patrushev I , Chiu WTY , Cho KWY , Gilchrist MJ ., Dev Biol. June 15, 2017; 426 (2): 409-417.
Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. , Watanabe M, Yasuoka Y, Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H , Ogino H , Fukui A , Taira M , Kinoshita T., Dev Biol. June 15, 2017; 426 (2): 301-324.
Foxh1 Occupies cis-Regulatory Modules Prior to Dynamic Transcription Factor Interactions Controlling the Mesendoderm Gene Program. , Charney RM , Forouzmand E, Cho JS, Cheung J, Paraiso KD , Yasuoka Y, Takahashi S , Taira M , Blitz IL , Xie X, Cho KW ., Dev Cell. March 27, 2017; 40 (6): 595-607.e4.
FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development. , Reid CD, Steiner AB, Yaklichkin S , Lu Q, Wang S, Hennessy M, Kessler DS ., Dev Biol. June 1, 2016; 414 (1): 34-44.
Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development. , Owens ND, Blitz IL , Lane MA, Patrushev I , Overton JD, Gilchrist MJ , Cho KW , Khokha MK ., Cell Rep. January 26, 2016; 14 (3): 632-47.
Pou5f3.2-induced proliferative state of embryonic cells during gastrulation of Xenopus laevis embryo. , Nishitani E, Li C, Lee J , Hotta H, Katayama Y, Yamaguchi M, Kinoshita T., Dev Growth Differ. December 1, 2015; 57 (9): 591-600.
E2a is necessary for Smad2/3-dependent transcription and the direct repression of lefty during gastrulation. , Wills AE , Baker JC ., Dev Cell. February 9, 2015; 32 (3): 345-57.
Genome-wide view of TGFβ/ Foxh1 regulation of the early mesendoderm program. , Chiu WT , Charney Le R, Blitz IL , Fish MB, Li Y, Biesinger J, Xie X, Cho KW ., Development. December 1, 2014; 141 (23): 4537-47.
Fezf2 promotes neuronal differentiation through localised activation of Wnt/ β-catenin signalling during forebrain development. , Zhang S , Li J, Lea R, Vleminckx K , Vleminckx K , Amaya E ., Development. December 1, 2014; 141 (24): 4794-805.
Global identification of Smad2 and Eomesodermin targets in zebrafish identifies a conserved transcriptional network in mesendoderm and a novel role for Eomesodermin in repression of ectodermal gene expression. , Nelson AC, Cutty SJ, Niini M, Stemple DL , Flicek P, Houart C, Bruce AE, Wardle FC., BMC Biol. October 3, 2014; 12 81.
A potential molecular pathogenesis of cardiac/laterality defects in Oculo-Facio-Cardio-Dental syndrome. , Tanaka K, Kato A, Angelocci C, Watanabe M, Kato Y ., Dev Biol. March 1, 2014; 387 (1): 28-36.
Inference of the Xenopus tropicalis embryonic regulatory network and spatial gene expression patterns. , Zheng Z, Christley S, Chiu WT , Blitz IL , Xie X, Cho KW , Nie Q., BMC Syst Biol. January 8, 2014; 8 3.
A functional genome-wide in vivo screen identifies new regulators of signalling pathways during early Xenopus embryogenesis. , Zhang S , Li J, Lea R, Amaya E , Dorey K ., PLoS One. November 13, 2013; 8 (11): e79469.
In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. , Gentsch GE , Owens ND, Martin SR, Piccinelli P, Faial T, Trotter MW, Gilchrist MJ , Smith JC ., Cell Rep. September 26, 2013; 4 (6): 1185-96.
Single blastomere expression profiling of Xenopus laevis embryos of 8 to 32-cells reveals developmental asymmetry. , Flachsova M, Sindelka R , Kubista M., Sci Rep. January 1, 2013; 3 2278.
Transcriptional integration of Wnt and Nodal pathways in establishment of the Spemann organizer. , Reid CD, Zhang Y , Zhang Y , Sheets MD , Kessler DS ., Dev Biol. August 15, 2012; 368 (2): 231-41.
HEB and E2A function as SMAD/FOXH1 cofactors. , Yoon SJ , Wills AE , Chuong E, Gupta R , Baker JC ., Genes Dev. August 1, 2011; 25 (15): 1654-61.
A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer. , Rankin SA , Rankin SA , Kormish J , Kofron M , Jegga A, Zorn AM ., Dev Biol. March 15, 2011; 351 (2): 297-310.
Zygotic VegT is required for Xenopus paraxial mesoderm formation and is regulated by Nodal signaling and Eomesodermin. , Fukuda M, Takahashi S , Haramoto Y , Onuma Y , Kim YJ, Yeo CY, Ishiura S, Asashima M ., Int J Dev Biol. January 1, 2010; 54 (1): 81-92.
Comparative gene expression analysis and fate mapping studies suggest an early segregation of cardiogenic lineages in Xenopus laevis. , Gessert S, Kühl M ., Dev Biol. October 15, 2009; 334 (2): 395-408.
Chromatin immunoprecipitation in early Xenopus laevis embryos. , Blythe SA , Reid CD, Kessler DS , Klein PS ., Dev Dyn. June 1, 2009; 238 (6): 1422-32.
Ectodermal factor restricts mesoderm differentiation by inhibiting p53. , Sasai N, Yakura R, Kamiya D, Nakazawa Y, Sasai Y ., Cell. May 30, 2008; 133 (5): 878-90.
Sumoylation differentially regulates Goosecoid-mediated transcriptional repression. , Izzi L, Narimatsu M, Attisano L., Exp Cell Res. April 15, 2008; 314 (7): 1585-94.
Intracellular expression profiles measured by real-time PCR tomography in the Xenopus laevis oocyte. , Sindelka R , Jonák J , Hands R, Bustin SA, Kubista M., Nucleic Acids Res. February 1, 2008; 36 (2): 387-92.
Selective inhibition of TGF-beta responsive genes by Smad-interacting peptide aptamers from FoxH1, Lef1 and CBP. , Cui Q, Lim SK, Zhao B, Hoffmann FM., Oncogene. June 2, 2005; 24 (24): 3864-74.
Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development. , Pohl BS, Knöchel W ., Gene. January 3, 2005; 344 21-32.
New roles for FoxH1 in patterning the early embryo. , Kofron M , Puck H, Standley H , Wylie C , Old R , Whitman M , Heasman J ., Development. October 1, 2004; 131 (20): 5065-78.
The Mix family homeodomain gene bonnie and clyde functions with other components of the Nodal signaling pathway to regulate neural patterning in zebrafish. , Trinh LA, Meyer D, Stainier DY., Development. October 1, 2003; 130 (20): 4989-98.
Regulation of the Lim-1 gene is mediated through conserved FAST-1/ FoxH1 sites in the first intron. , Watanabe M, Rebbert ML, Andreazzoli M , Takahashi N , Toyama R, Zimmerman S, Whitman M , Dawid IB ., Dev Dyn. December 1, 2002; 225 (4): 448-56.
A novel Xenopus Smad-interacting forkhead transcription factor ( XFast-3) cooperates with XFast-1 in regulating gastrulation movements. , Howell M, Inman GJ, Hill CS ., Development. June 1, 2002; 129 (12): 2823-34.
The role of a Williams-Beuren syndrome-associated helix-loop-helix domain-containing transcription factor in activin/ nodal signaling. , Ring C, Ogata S, Meek L, Song J, Ohta T, Miyazono K, Cho KW ., Genes Dev. April 1, 2002; 16 (7): 820-35.
The transcriptional role of Smads and FAST ( FoxH1) in TGFbeta and activin signalling. , Attisano L, Silvestri C, Izzi L, Labbé E., Mol Cell Endocrinol. June 30, 2001; 180 (1-2): 3-11.