Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (90) GO Terms (0) Nucleotides (114) Proteins (65) Interactants (135) Wiki
XB-GENEPAGE-6047372

Papers associated with kcnq2



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


A potassium channel mutation in neonatal human epilepsy., Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P, Jentsch TJ, Steinlein OK., Science. January 16, 1998; 279 (5349): 403-6.


Functional expression of two KvLQT1-related potassium channels responsible for an inherited idiopathic epilepsy., Yang WP, Levesque PC, Little WA, Conder ML, Ramakrishnan P, Neubauer MG, Blanar MA., J Biol Chem. July 31, 1998; 273 (31): 19419-23.


KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel., Wang HS, Pan Z, Shi W, Brown BS, Wymore RS, Cohen IS, Dixon JE, McKinnon D., Science. December 4, 1998; 282 (5395): 1890-3.


Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy., Schroeder BC, Kubisch C, Stein V, Jentsch TJ., Nature. December 17, 1998; 396 (6712): 687-90.


A reduced K+ current due to a novel mutation in KCNQ2 causes neonatal convulsions., Lerche H, Biervert C, Alekov AK, Schleithoff L, Lindner M, Klinger W, Bretschneider F, Mitrovic N, Jurkat-Rott K, Bode H, Lehmann-Horn F, Steinlein OK., Ann Neurol. September 1, 1999; 46 (3): 305-12.


Surface expression and single channel properties of KCNQ2/KCNQ3, M-type K+ channels involved in epilepsy., Schwake M, Pusch M, Kharkovets T, Jentsch TJ., J Biol Chem. May 5, 2000; 275 (18): 13343-8.


Molecular basis for differential sensitivity of KCNQ and I(Ks) channels to the cognitive enhancer XE991., Wang HS, Brown BS, McKinnon D, Cohen IS., Mol Pharmacol. June 1, 2000; 57 (6): 1218-23.


Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine., Main MJ, Cryan JE, Dupere JR, Cox B, Clare JJ, Burbidge SA., Mol Pharmacol. August 1, 2000; 58 (2): 253-62.


Cloning and functional expression of rKCNQ2 K(+) channel from rat brain., Jow F, Wang K., Brain Res Mol Brain Res. September 15, 2000; 80 (2): 269-78.


Identification of specific pore residues mediating KCNQ1 inactivation. A novel mechanism for long QT syndrome., Seebohm G, Scherer CR, Busch AE, Lerche C., J Biol Chem. April 27, 2001; 276 (17): 13600-5.


Xe991 reveals differences in K(+) channels regulating chloride secretion in murine airway and colonic epithelium., MacVinish LJ, Guo Y, Dixon AK, Murrell-Lagnado RD, Cuthbert AW., Mol Pharmacol. October 1, 2001; 60 (4): 753-60.


Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel., Dedek K, Kunath B, Kananura C, Reuner U, Jentsch TJ, Steinlein OK., Proc Natl Acad Sci U S A. October 9, 2001; 98 (21): 12272-7.


Benign familial neonatal convulsions caused by altered gating of KCNQ2/KCNQ3 potassium channels., Castaldo P, del Giudice EM, Coppola G, Pascotto A, Annunziato L, Taglialatela M., J Neurosci. January 15, 2002; 22 (2): RC199.


KCNE4 is an inhibitory subunit to the KCNQ1 channel., Grunnet M, Jespersen T, Rasmussen HB, Ljungstrøm T, Jorgensen NK, Olesen SP, Klaerke DA., J Physiol. July 1, 2002; 542 (Pt 1): 119-30.


A carboxy-terminal domain determines the subunit specificity of KCNQ K+ channel assembly., Schwake M, Jentsch TJ, Friedrich T., EMBO Rep. January 1, 2003; 4 (1): 76-81.


Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2., Dedek K, Fusco L, Teloy N, Steinlein OK., Epilepsy Res. April 1, 2003; 54 (1): 21-7.


C-terminal interaction of KCNQ2 and KCNQ3 K+ channels., Maljevic S, Lerche C, Seebohm G, Alekov AK, Busch AE, Lerche H., J Physiol. April 15, 2003; 548 (Pt 2): 353-60.


KCNQ1 channels sense small changes in cell volume., Grunnet M, Jespersen T, MacAulay N, Jørgensen NK, Schmitt N, Pongs O, Olesen SP, Klaerke DA., J Physiol. June 1, 2003; 549 (Pt 2): 419-27.


Molecular determinants of KCNQ1 channel block by a benzodiazepine., Seebohm G, Chen J, Strutz N, Culberson C, Lerche C, Sanguinetti MC., Mol Pharmacol. July 1, 2003; 64 (1): 70-7.


Inhibitory effects of pimozide on cloned and native voltage-gated potassium channels., Zhang ZH, Lee YT, Rhodes K, Wang K, Argentieri TM, Wang Q., Brain Res Mol Brain Res. July 4, 2003; 115 (1): 29-38.


A novel KCNQ2 K+ channel mutation in benign neonatal convulsions and centrotemporal spikes., Coppola G, Castaldo P, Miraglia del Giudice E, Bellini G, Galasso F, Soldovieri MV, Anzalone L, Sferro C, Annunziato L, Pascotto A, Taglialatela M., Neurology. July 8, 2003; 61 (1): 131-4.


(S)-N-[1-(3-morpholin-4-ylphenyl)ethyl]- 3-phenylacrylamide: an orally bioavailable KCNQ2 opener with significant activity in a cortical spreading depression model of migraine., Wu YJ, Boissard CG, Greco C, Gribkoff VK, Harden DG, He H, L'Heureux A, Kang SH, Kinney GG, Knox RJ, Natale J, Newton AE, Lehtinen-Oboma S, Sinz MW, Sivarao DV, Starrett JE, Sun LQ, Tertyshnikova S, Thompson MW, Weaver D, Wong HS, Zhang L, Dworetzky SI., J Med Chem. July 17, 2003; 46 (15): 3197-200.


Mutations linked to generalized epilepsy in humans reduce GABA(A) receptor current., Macdonald RL, Bianchi MT, Bianch MT, Feng H., Exp Neurol. November 1, 2003; 184 Suppl 1 S58-67.


The therapeutic potential of neuronal KCNQ channel modulators., Gribkoff VK., Expert Opin Ther Targets. December 1, 2003; 7 (6): 737-48.


KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum., Singh NA, Westenskow P, Charlier C, Pappas C, Leslie J, Dillon J, Anderson VE, Sanguinetti MC, Leppert MF, BFNC Physician Consortium., Brain. December 1, 2003; 126 (Pt 12): 2726-37.


The synthesis and structure-activity relationships of 3-amino-4-benzylquinolin-2-ones; discovery of novel KCNQ2 channel openers., Hewawasam P, Chen N, Ding M, Natale JT, Boissard CG, Yeola S, Gribkoff VK, Starrett J, Dworetzky SI., Bioorg Med Chem Lett. April 5, 2004; 14 (7): 1615-8.


Synthesis and structure-activity relationship of acrylamides as KCNQ2 potassium channel openers., Wu YJ, He H, Sun LQ, L'Heureux A, Chen J, Dextraze P, Starrett JE, Boissard CG, Gribkoff VK, Natale J, Dworetzky SI., J Med Chem. May 20, 2004; 47 (11): 2887-96.


Three mechanisms underlie KCNQ2/3 heteromeric potassium M-channel potentiation., Etxeberria A, Santana-Castro I, Regalado MP, Aivar P, Villarroel A., J Neurosci. October 13, 2004; 24 (41): 9146-52.


Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior., Peters HC, Hu H, Pongs O, Storm JF, Isbrandt D., Nat Neurosci. January 1, 2005; 8 (1): 51-60.


The new anticonvulsant retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by binding to its activation gate., Wuttke TV, Seebohm G, Bail S, Maljevic S, Lerche H., Mol Pharmacol. April 1, 2005; 67 (4): 1009-17.


Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine., Schenzer A, Friedrich T, Pusch M, Saftig P, Jentsch TJ, Grötzinger J, Schwake M., J Neurosci. May 18, 2005; 25 (20): 5051-60.


Protein kinase C shifts the voltage dependence of KCNQ/M channels expressed in Xenopus oocytes., Nakajo K, Kubo Y., J Physiol. November 15, 2005; 569 (Pt 1): 59-74.


Identification by mass spectrometry and functional characterization of two phosphorylation sites of KCNQ2/KCNQ3 channels., Surti TS, Huang L, Jan YN, Jan LY, Cooper EC., Proc Natl Acad Sci U S A. December 6, 2005; 102 (49): 17828-33.


A spontaneous mutation involving Kcnq2 (Kv7.2) reduces M-current density and spike frequency adaptation in mouse CA1 neurons., Otto JF, Yang Y, Frankel WN, White HS, Wilcox KS., J Neurosci. February 15, 2006; 26 (7): 2053-9.


Differential roles of S6 domain hinges in the gating of KCNQ potassium channels., Seebohm G, Strutz-Seebohm N, Ureche ON, Baltaev R, Lampert A, Kornichuk G, Kamiya K, Wuttke TV, Lerche H, Sanguinetti MC, Lang F., Biophys J. March 15, 2006; 90 (6): 2235-44.


Structural determinants of M-type KCNQ (Kv7) K+ channel assembly., Schwake M, Athanasiadu D, Beimgraben C, Blanz J, Beck C, Jentsch TJ, Saftig P, Friedrich T., J Neurosci. April 5, 2006; 26 (14): 3757-66.


Subthreshold changes of voltage-dependent activation of the K(V)7.2 channel in neonatal epilepsy., Hunter J, Maljevic S, Shankar A, Siegel A, Weissman B, Holt P, Olson L, Lerche H, Escayg A., Neurobiol Dis. October 1, 2006; 24 (1): 194-201.


The role of S4 charges in voltage-dependent and voltage-independent KCNQ1 potassium channel complexes., Panaghie G, Abbott GW., J Gen Physiol. February 1, 2007; 129 (2): 121-33.                      


Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by ubiquitination. Novel role for Nedd4-2., Ekberg J, Schuetz F, Boase NA, Conroy SJ, Manning J, Kumar S, Poronnik P, Adams DJ., J Biol Chem. April 20, 2007; 282 (16): 12135-42.


Modulation of ERG channels by XE991., Elmedyb P, Calloe K, Schmitt N, Hansen RS, Grunnet M, Olesen SP., Basic Clin Pharmacol Toxicol. May 1, 2007; 100 (5): 316-22.


Chromanol 293B binding in KCNQ1 (Kv7.1) channels involves electrostatic interactions with a potassium ion in the selectivity filter., Lerche C, Bruhova I, Lerche H, Steinmeyer K, Wei AD, Strutz-Seebohm N, Lang F, Busch AE, Zhorov BS, Seebohm G., Mol Pharmacol. June 1, 2007; 71 (6): 1503-11.


Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations., Wuttke TV, Jurkat-Rott K, Paulus W, Garncarek M, Lehmann-Horn F, Lerche H., Neurology. November 27, 2007; 69 (22): 2045-53.


Neutralization of a negative charge in the S1-S2 region of the KV7.2 (KCNQ2) channel affects voltage-dependent activation in neonatal epilepsy., Wuttke TV, Penzien J, Fauler M, Seebohm G, Lehmann-Horn F, Lerche H, Jurkat-Rott K., J Physiol. January 15, 2008; 586 (2): 545-55.


Second coiled-coil domain of KCNQ channel controls current expression and subfamily specific heteromultimerization by salt bridge networks., Nakajo K, Kubo Y., J Physiol. June 15, 2008; 586 (12): 2827-40.


Enzyme domain affects the movement of the voltage sensor in ascidian and zebrafish voltage-sensing phosphatases., Hossain MI, Iwasaki H, Okochi Y, Chahine M, Higashijima S, Nagayama K, Okamura Y., J Biol Chem. June 27, 2008; 283 (26): 18248-59.


Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by serum- and glucocorticoid-regulated kinase-1., Schuetz F, Kumar S, Poronnik P, Adams DJ., Am J Physiol Cell Physiol. July 1, 2008; 295 (1): C73-80.


A schizophrenia-linked mutation in PIP5K2A fails to activate neuronal M channels., Fedorenko O, Strutz-Seebohm N, Henrion U, Ureche ON, Lang F, Seebohm G, Lang UE., Psychopharmacology (Berl). July 1, 2008; 199 (1): 47-54.


KCNQ2 and KCNQ3 mutations contribute to different idiopathic epilepsy syndromes., Neubauer BA, Waldegger S, Heinzinger J, Hahn A, Kurlemann G, Fiedler B, Eberhard F, Muhle H, Stephani U, Garkisch S, Eeg-Olofsson O, Müller U, Sander T., Neurology. July 15, 2008; 71 (3): 177-83.


Coupling between the voltage-sensing and phosphatase domains of Ci-VSP., Villalba-Galea CA, Miceli F, Taglialatela M, Bezanilla F., J Gen Physiol. July 1, 2009; 134 (1): 5-14.                


Calmodulin activation limits the rate of KCNQ2 K+ channel exit from the endoplasmic reticulum., Alaimo A, Gómez-Posada JC, Aivar P, Etxeberría A, Rodriguez-Alfaro JA, Areso P, Villarroel A., J Biol Chem. July 31, 2009; 284 (31): 20668-75.

???pagination.result.page??? 1 2 ???pagination.result.next???