Results 1 - 29 of 29 results
Identification and validation of candidate risk genes in endocytic vesicular trafficking associated with esophageal atresia and tracheoesophageal fistulas. , Zhong G, Ahimaz P, Edwards NA , Hagen JJ, Faure C, Lu Q, Kingma P, Middlesworth W, Khlevner J, El Fiky M, Schindel D, Fialkowski E, Kashyap A, Forlenza S, Kenny AP , Zorn AM , Shen Y, Chung WK., HGG Adv. July 14, 2022; 3 (3): 100107.
HMCES modulates the transcriptional regulation of nodal/activin and BMP signaling in mESCs. , Liang T, Bai J, Zhou W, Lin H, Ma S, Zhu X, Tao Q , Xi Q., Cell Rep. July 12, 2022; 40 (2): 111038.
Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly. , Gur M, Bendelac-Kapon L, Shabtai Y, Pillemer G, Fainsod A ., Front Cell Dev Biol. January 1, 2022; 10 844619.
Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in Xenopus and zebrafish embryos. , Naert T, Tulkens D, Edwards NA , Carron M, Shaidani NI , Wlizla M , Boel A, Demuynck S, Horb ME , Coucke P, Willaert A, Zorn AM , Vleminckx K , Vleminckx K ., Sci Rep. September 4, 2020; 10 (1): 14662.
Axis Patterning by BMPs: Cnidarian Network Reveals Evolutionary Constraints. , Genikhovich G, Fried P, Prünster MM, Schinko JB, Gilles AF, Fredman D, Meier K, Iber D, Technau U., Cell Rep. March 17, 2015; 10 (10): 1646-1654.
USP15 targets ALK3/ BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling. , Herhaus L, Al-Salihi MA, Dingwell KS, Cummins TD, Wasmus L, Vogt J, Ewan R, Bruce D, Macartney T, Weidlich S, Smith JC , Sapkota GP., Open Biol. May 1, 2014; 4 (5): 140065.
Role of BMP, FGF, calcium signaling, and Zic proteins in vertebrate neuroectodermal differentiation. , Aruga J , Mikoshiba K ., Neurochem Res. July 1, 2011; 36 (7): 1286-92.
Negative feedback in the bone morphogenetic protein 4 ( BMP4) synexpression group governs its dynamic signaling range and canalizes development. , Paulsen M, Legewie S, Eils R, Karaulanov E, Niehrs C ., Proc Natl Acad Sci U S A. June 21, 2011; 108 (25): 10202-7.
Expression cloning of Xenopus zygote arrest 2 ( Xzar2) as a novel epidermalization-promoting factor in early embryos of Xenopus laevis. , Nakajima Y, Okamoto H , Kubo T , Kubo T ., Genes Cells. May 1, 2009; 14 (5): 583-95.
Unexpected activities of Smad7 in Xenopus mesodermal and neural induction. , de Almeida I, Rolo A, Batut J, Hill C , Stern CD, Linker C., Mech Dev. January 1, 2008; 125 (5-6): 421-31.
The secreted EGF-Discoidin factor xDel1 is essential for dorsal development of the Xenopus embryo. , Arakawa A, Matsuo-Takasaki M, Takai A, Inomata H , Matsumura M, Ikeya M, Takahashi K, Miyachi Y, Sasai N, Sasai Y ., Dev Biol. June 1, 2007; 306 (1): 160-9.
Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides. , Rana AA, Collart C , Gilchrist MJ , Smith JC ., PLoS Genet. November 17, 2006; 2 (11): e193.
An Oct-1 binding site mediates activation of the gata2 promoter by BMP signaling. , Oren T, Torregroza I, Evans T ., Nucleic Acids Res. August 1, 2005; 33 (13): 4357-67.
Temporal analysis of the early BMP functions identifies distinct anti- organizer and mesoderm patterning phases. , Marom K, Levy V, Pillemer G, Fainsod A ., Dev Biol. June 15, 2005; 282 (2): 442-54.
Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. , Delaune E, Lemaire P , Kodjabachian L ., Development. January 1, 2005; 132 (2): 299-310.
A new role for BMP5 during limb development acting through the synergic activation of Smad and MAPK pathways. , Zuzarte-Luís V, Montero JA , Rodriguez-León J, Merino R, Rodríguez-Rey JC, Hurlé JM., Dev Biol. August 1, 2004; 272 (1): 39-52.
Roles for the MH2 domain of Smad7 in the specific inhibition of transforming growth factor-beta superfamily signaling. , Mochizuki T, Miyazaki H, Hara T, Furuya T, Imamura T, Watabe T, Miyazono K., J Biol Chem. July 23, 2004; 279 (30): 31568-74.
Primitive erythropoiesis is regulated by Smad-dependent signaling in postgastrulation mesoderm. , Schmerer M, Evans T ., Blood. November 1, 2003; 102 (9): 3196-205.
TGF-beta signalling pathways in early Xenopus development. , Hill CS ., Curr Opin Genet Dev. October 1, 2001; 11 (5): 533-40.
Human truncated Smad 6 (Smad 6s) inhibits the BMP pathway in Xenopus laevis. , Krishnan P, King MW , King MW , Neff AW , Sandusky GE, Bierman KL, Grinnell B, Smith RC ., Dev Growth Differ. April 1, 2001; 43 (2): 115-32.
Bone morphogenetic protein function is required for terminal differentiation of the heart but not for early expression of cardiac marker genes. , Walters MJ, Wayman GA, Christian JL ., Mech Dev. February 1, 2001; 100 (2): 263-73.
Dissection of inhibitory Smad proteins: both N- and C-terminal domains are necessary for full activities of Xenopus Smad6 and Smad7. , Nakayama T , Berg LK, Christian JL ., Mech Dev. February 1, 2001; 100 (2): 251-62.
The Xvex-1 antimorph reveals the temporal competence for organizer formation and an early role for ventral homeobox genes. , Shapira E, Marom1 K, Levy V, Yelin R , Fainsod A ., Mech Dev. January 1, 2000; 90 (1): 77-87.
Evidence for a role of Smad6 in chick cardiac development. , Yamada M, Szendro PI, Prokscha A, Schwartz RJ, Eichele G., Dev Biol. November 1, 1999; 215 (1): 48-61.
Can't get no SMADisfaction: Smad proteins as positive and negative regulators of TGF-beta family signals. , Christian JL , Nakayama T ., Bioessays. May 1, 1999; 21 (5): 382-90.
A molecular basis for Smad specificity. , Lagna G, Hemmati-Brivanlou A ., Dev Dyn. March 1, 1999; 214 (3): 269-77.
Smad6 functions as an intracellular antagonist of some TGF-beta family members during Xenopus embryogenesis. , Nakayama T , Gardner H, Berg LK, Christian JL ., Genes Cells. June 1, 1998; 3 (6): 387-94.
Xenopus Smad7 inhibits both the activin and BMP pathways and acts as a neural inducer. , Casellas R, Brivanlou AH ., Dev Biol. June 1, 1998; 198 (1): 1-12.
Smad6 inhibits BMP/ Smad1 signaling by specifically competing with the Smad4 tumor suppressor. , Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A ., Genes Dev. January 15, 1998; 12 (2): 186-97.