Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (35)
XB-PERS-694

Publications By Susan Udin

???pagination.result.count???

???pagination.result.page??? 1


Dual origins of the mammalian accessory olfactory bulb revealed by an evolutionarily conserved migratory stream., Huilgol D, Udin S, Shimogori T, Saha B, Roy A, Aizawa S, Hevner RF, Meyer G, Ohshima T, Pleasure SJ, Zhao Y, Tole S., Nat Neurosci. February 1, 2013; 16 (2): 157-65.    


Binocular maps in Xenopus tectum: Visual experience and the development of isthmotectal topography., Udin SB., Dev Neurobiol. April 1, 2012; 72 (4): 564-74.


Isthmotectal axons maintain normal arbor size but fail to support normal branch numbers in dark-reared Xenopus laevis., Udin SB., J Comp Neurol. April 1, 2008; 507 (4): 1559-70.


The instructive role of binocular vision in the Xenopus tectum., Udin SB., Biol Cybern. December 1, 2007; 97 (5-6): 493-503.


Melatonin decreases calcium levels in retinotectal axons of Xenopus laevis by indirect activation of group III metabotropic glutamate receptors., Prada C, Udin SB., Dev Biol. August 16, 2005; 1053 (1-2): 67-76.


Stimulation of melatonin receptors decreases calcium levels in xenopus tectal cells by activating GABA(C) receptors., Prada C, Udin SB, Wiechmann AF, Zhdanova IV., J Neurophysiol. August 1, 2005; 94 (2): 968-78.


Chronic melatonin and binocular plasticity in Xenopus frogs., Udin SB., Gen Comp Endocrinol. July 1, 2005; 142 (3): 274-9.


Connections of contralaterally projecting isthmotectal axons and GABA-immunoreactive neurons in Xenopus tectum: an ultrastructural study., Rybicka KK, Udin SB., Vis Neurosci. January 1, 2005; 22 (3): 305-15.


Localization of Mel1b melatonin receptor-like immunoreactivity in ocular tissues of Xenopus laevis., Wiechmann AF, Udin SB, Summers Rada JA., Exp Eye Res. October 1, 2004; 79 (4): 585-94.                  


MAP2 phosphorylation and visual plasticity in Xenopus., Guo Y, Sánchez C, Udin SB., Dev Biol. June 29, 2001; 905 (1-2): 134-41.


CPG15 and the dynamics of retinotectal synapses., Udin S., Nat Neurosci. October 1, 2000; 3 (10): 971-2.


The development of abnormal axon trajectories after rotation of one eye in Xenopus., Guo Y, Udin SB., J Neurosci. June 1, 2000; 20 (11): 4189-97.


Plasticity in the tectum of Xenopus laevis: binocular maps., Udin SB, Grant S., Prog Neurobiol. October 1, 1999; 59 (2): 81-106.


Effects of choline and other nicotinic agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study., Titmus MJ, Tsai HJ, Lima R, Udin SB., Neuroscience. January 1, 1999; 91 (2): 753-69.


Polysialylated neural cell adhesion molecule and plasticity of ipsilateral connections in Xenopus tectum., Williams DK, Gannon-Murakami L, Rougon G, Udin SB., Neuroscience. January 1, 1996; 70 (1): 277-85.


Differential intertectal delay between Rana pipiens and Xenopus laevis: implications for species-specific visual plasticity., Scherer WJ, Udin SB., Vis Neurosci. January 1, 1995; 12 (5): 1007-11.


Ultrastructure and GABA immunoreactivity in layers 8 and 9 of the optic tectum of Xenopus laevis., Rybicka KK, Udin SB., Eur J Neurosci. October 1, 1994; 6 (10): 1567-82.                    


Acceleration by NMDA treatment of visually induced map reorganization in juvenile Xenopus after larval eye rotation., Bandarchi J, Scherer WJ, Udin SB., J Neurobiol. April 1, 1994; 25 (4): 451-60.


Xenopus exhibits seasonal variation in retinotectal latency but not tecto-isthmo-tectal latency., Scherer WJ, Udin SB., J Comp Physiol A. September 1, 1992; 171 (2): 207-12.


Isthmotectal axons make ectopic synapses in monocular regions of the tectum in developing Xenopus laevis frogs., Udin SB, Fisher MD, Norden JJ., J Comp Neurol. August 22, 1992; 322 (4): 461-70.


Chronic effects of NMDA and APV on tectal output in Xenopus laevis., Scherer WJ, Udin SB., Vis Neurosci. February 1, 1991; 6 (2): 185-92.


Latency and temporal overlap of visually elicited contralateral and ipsilateral firing in Xenopus tectum during and after the critical period., Scherer WJ, Udin SB., Brain Res Dev Brain Res. January 15, 1991; 58 (1): 129-32.


Experience-dependent formation of binocular maps in frogs. Possible involvement of N-methyl-D-aspartate receptors., Udin SB, Scherer WJ., Ann N Y Acad Sci. January 1, 1991; 627 26-41.


Restoration of the plasticity of binocular maps by NMDA after the critical period in Xenopus., Udin SB, Scherer WJ., Science. August 10, 1990; 249 (4969): 669-72.


Ultrastructure of the crossed isthmotectal projection in Xenopus frogs., Udin SB, Fisher MD, Norden JJ., J Comp Neurol. February 8, 1990; 292 (2): 246-54.


Plasticity in the ipsilateral visuotectal projection persists after lesions of one nucleus isthmi in Xenopus., Udin SB., Exp Brain Res. January 1, 1990; 79 (2): 338-44.


N-methyl-D-aspartate antagonists prevent interaction of binocular maps in Xenopus tectum., Scherer WJ, Udin SB., J Neurosci. November 1, 1989; 9 (11): 3837-43.


Development of the nucleus isthmi in Xenopus, II: Branching patterns of contralaterally projecting isthmotectal axons during maturation of binocular maps., Udin SB., Vis Neurosci. January 1, 1989; 2 (2): 153-63.


A projection from the mesencephalic tegmentum to the nucleus isthmi in the frogs, Rana pipiens and Acris crepitans., Udin SB., Neuroscience. May 1, 1987; 21 (2): 631-7.


The role of visual experience in the formation of binocular projections in frogs., Udin SB., Cell Mol Neurobiol. June 1, 1985; 5 (1-2): 85-102.


Intertectal neuronal plasticity in Xenopus laevis: persistence despite catecholamine depletion., Udin SB, Keating MJ, Dawes EA, Grant S, Deakin JF., Dev Biol. March 1, 1985; 351 (1): 81-8.


The development of the nucleus isthmi in Xenopus laevis. I. Cell genesis and the formation of connections with the tectum., Udin SB, Fisher MD., J Comp Neurol. February 1, 1985; 232 (1): 25-35.


Visualization of HRP-filled axons in unsectioned, flattened optic tecta of frogs., Udin SB, Fisher MD., J Neurosci Methods. December 1, 1983; 9 (4): 283-5.


Abnormal visual input leads to development of abnormal axon trajectories in frogs., Udin SB., Nature. January 27, 1983; 301 (5898): 336-8.


Plasticity in a central nervous pathway in xenopus: anatomical changes in the isthmotectal projection after larval eye rotation., Udin SB, Keating MJ., J Comp Neurol. December 20, 1981; 203 (4): 575-94.

???pagination.result.page??? 1