Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (27)
XB-PERS-675

Publications By Colin R. Sharpe

???pagination.result.count???

???pagination.result.page??? 1


Using HDR and a template to introduce an in-frame HA tag on the 3'' end of the Xenopus laevis gata2.L open reading frame., Piccinni M, Sharpe C, Guille M., MicroPubl Biol. September 17, 2019; 2019     


Short linear motif acquisition, exon formation and alternative splicing determine a pathway to diversity for NCoR-family co-repressors., Short S, Peterkin T, Guille M, Patient R, Sharpe C., Open Biol. August 1, 2015; 5 (8):                       


The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development., Nogueira JM, Hawrot K, Sharpe C, Noble A, Wood WM, Jorge EC, Goldhamer DJ, Kardon G, Dietrich S., Front Aging Neurosci. May 19, 2015; 7 62.                                            


Evolutionarily conserved morphogenetic movements at the vertebrate head-trunk interface coordinate the transport and assembly of hypopharyngeal structures., Lours-Calet C, Alvares LE, El-Hanfy AS, Gandesha S, Walters EH, Sobreira DR, Wotton KR, Jorge EC, Lawson JA, Kelsey Lewis A, Tada M, Sharpe C, Kardon G, Dietrich S., Dev Biol. June 15, 2014; 390 (2): 231-46.      


Xenopus embryos lacking specific isoforms of the corepressor SMRT develop abnormal heads., Malartre M, Short S, Sharpe C., Dev Biol. April 15, 2006; 292 (2): 333-43.                    


Developmental and tissue expression of Xenopus laevis RPGR., Shu X, Zeng Z, Eckmiller MS, Gautier P, Vlachantoni D, Manson FD, Tulloch B, Sharpe C, Gorecki DC, Wright AF., Invest Ophthalmol Vis Sci. January 1, 2006; 47 (1): 348-56.


The expression and alternative splicing of alpha-neurexins during Xenopus development., Zeng Z, Sharpe CR, Simons JP, Górecki DC., Int J Dev Biol. January 1, 2006; 50 (1): 39-46.                  


SMRT has tissue-specific isoform profiles that include a form containing one CoRNR box., Short S, Malartre M, Sharpe C., Biochem Biophys Res Commun. September 2, 2005; 334 (3): 845-52.


Alternative splicing generates multiple SMRT transcripts encoding conserved repressor domains linked to variable transcription factor interaction domains., Malartre M, Short S, Sharpe C., Nucleic Acids Res. September 1, 2004; 32 (15): 4676-86.


Retinoid signalling acts during the gastrula stages to promote primary neurogenesis., Sharpe C, Goldstone K., Int J Dev Biol. August 1, 2000; 44 (5): 463-70.


The control of Xenopus embryonic primary neurogenesis is mediated by retinoid signalling in the neurectoderm., Sharpe C, Goldstone K., Mech Dev. March 1, 2000; 91 (1-2): 69-80.              


The expression of XIF3 in undifferentiated anterior neuroectoderm, but not in primary neurons, is induced by the neuralizing agent noggin., Goldstone K, Sharpe CR., Int J Dev Biol. September 1, 1998; 42 (6): 757-62.          


Retinoid receptors promote primary neurogenesis in Xenopus., Sharpe CR, Goldstone K., Development. January 1, 1997; 124 (2): 515-23.        


A Xenopus c-kit-related receptor tyrosine kinase expressed in migrating stem cells of the lateral line system., Baker CV, Sharpe CR, Torpey NP, Heasman J, Wylie CC., Mech Dev. April 1, 1995; 50 (2-3): 217-28.    


Nonsense-mediated mRNA decay in Xenopus oocytes and embryos., Whitfield TT, Sharpe CR, Wylie CC., Dev Biol. October 1, 1994; 165 (2): 731-4.


The expression of retinoic acid receptors in Xenopus development., Sharpe CR., Biochem Soc Trans. August 1, 1994; 22 (3): 575-9.


Two isoforms of retinoic acid receptor alpha expressed during Xenopus development respond to retinoic acid., Sharpe CR., Mech Dev. November 1, 1992; 39 (1-2): 81-93.


A Xenopus borealis homeobox gene expressed preferentially in posterior ectoderm., Stickland JE, Sharpe CR, Turner PC, Hames BD., Gene. July 15, 1992; 116 (2): 269-73.        


Retinoic acid and the late phase of neural induction., Sharpe CR., Dev Suppl. January 1, 1992; 203-7.


Retinoic acid can mimic endogenous signals involved in transformation of the Xenopus nervous system., Sharpe CR., Neuron. August 1, 1991; 7 (2): 239-47.


Regional neural induction in Xenopus laevis., Sharpe CR., Bioessays. December 1, 1990; 12 (12): 591-6.


The induction of anterior and posterior neural genes in Xenopus laevis., Sharpe CR, Gurdon JB., Development. August 1, 1990; 109 (4): 765-74.


XIF3, a Xenopus peripherin gene, requires an inductive signal for enhanced expression in anterior neural tissue., Sharpe CR, Pluck A, Gurdon JB., Development. December 1, 1989; 107 (4): 701-14.


Embryonic induction and muscle gene activation., Gurdon JB, Mohun TJ, Sharpe CR, Taylor MV., Trends Genet. February 1, 1989; 5 (2): 51-6.


Vimentin expression in oocytes, eggs and early embryos of Xenopus laevis., Tang P, Sharpe CR, Mohun TJ, Wylie CC., Development. June 1, 1988; 103 (2): 279-87.              


Developmental expression of a neurofilament-M and two vimentin-like genes in Xenopus laevis., Sharpe CR., Development. June 1, 1988; 103 (2): 269-77.


A homeobox-containing marker of posterior neural differentiation shows the importance of predetermination in neural induction., Sharpe CR, Fritz A, De Robertis EM, Gurdon JB., Cell. August 28, 1987; 50 (5): 749-58.

???pagination.result.page??? 1