Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (47)

Publications By Barry E. Knox

Results 1 - 47 of 47 results

Page(s): 1

Retinal tissue preparation for high-resolution live imaging of photoreceptors expressing multiple transgenes., Haeri M, Zhuo X, Haeri M, Knox BE., MethodsX. March 16, 2018; 5 1140-1147.      

Cooperative activation of Xenopus rhodopsin transcription by paired-like transcription factors., Reks SE, McIlvain V, Zhuo X, Knox BE., BMC Mol Biol. February 6, 2014; 15 4.                  

A conserved aromatic residue regulating photosensitivity in short-wavelength sensitive cone visual pigments., Kuemmel CM, Sandberg MN, Birge RR, Knox BE., Biochemistry. July 30, 2013; 52 (30): 5084-91.

Modeling the flexural rigidity of rod photoreceptors., Haeri M, Knox BE, Ahmadi A., Biophys J. January 22, 2013; 104 (2): 300-12.

Regulation of rhodopsin-eGFP distribution in transgenic xenopus rod outer segments by light., Haeri M, Calvert PD, Solessio E, Pugh EN, Knox BE., PLoS One. January 1, 2013; 8 (11): e80059.                      

An inducible expression system to measure rhodopsin transport in transgenic Xenopus rod outer segments., Zhuo X, Haeri M, Solessio E, Knox BE., PLoS One. January 1, 2013; 8 (12): e82629.                

Impact of signaling microcompartment geometry on GPCR dynamics in live retinal photoreceptors., Najafi M, Haeri M, Knox BE, Schiesser WE, Calvert PD., J Gen Physiol. September 1, 2012; 140 (3): 249-66.                  

Site-specific transgenesis in Xenopus., Zuber ME, Nihart HS, Zhuo X, Babu S, Knox BE., Genesis. March 1, 2012; 50 (3): 325-32.      

Rhodopsin mutant P23H destabilizes rod photoreceptor disk membranes., Haeri M, Knox BE., PLoS One. January 1, 2012; 7 (1): e30101.            

Generation of transgenic Xenopus using restriction enzyme-mediated integration., Haeri M, Knox BE., Methods Mol Biol. January 1, 2012; 884 17-39.

Conserved residues in the extracellular loops of short-wavelength cone visual pigments., Chen MH, Sandberg DJ, Babu KR, Bubis J, Surya A, Ramos LS, Zapata HJ, Galan JF, Sandberg MN, Birge RR, Knox BE., Biochemistry. August 16, 2011; 50 (32): 6763-73.

Characterization of human cone phosphodiesterase-6 ectopically expressed in Xenopus laevis rods., Muradov H, Boyd KK, Haeri M, Kerov V, Knox BE, Artemyev NO., J Biol Chem. November 20, 2009; 284 (47): 32662-9.            

Light responses in rods of vitamin A-deprived Xenopus., Solessio E, Umino Y, Cameron DA, Loew E, Engbretson GA, Knox BE, Barlow RB., Invest Ophthalmol Vis Sci. September 1, 2009; 50 (9): 4477-86.

Regulatory sequences in the 3' untranslated region of the human cGMP-phosphodiesterase beta-subunit gene., Verardo MR, Viczian A, Piri N, Akhmedov NB, Knox BE, Farber DB., Invest Ophthalmol Vis Sci. June 1, 2009; 50 (6): 2591-8.

The outer segment serves as a default destination for the trafficking of membrane proteins in photoreceptors., Baker SA, Haeri M, Yoo P, Gospe SM, Skiba NP, Knox BE, Arshavsky VY., J Cell Biol. November 3, 2008; 183 (3): 485-98.                    

Nr2e3 and Nrl can reprogram retinal precursors to the rod fate in Xenopus retina., McIlvain VA, Knox BE., Dev Dyn. July 1, 2007; 236 (7): 1970-9.      

Regulation of photoactivation in vertebrate short wavelength visual pigments: protonation of the retinylidene Schiff base and a counterion switch., Ramos LS, Chen MH, Knox BE, Birge RR., Biochemistry. May 8, 2007; 46 (18): 5330-40.

Shedding light on cones., Knox BE, Solessio E., J Gen Physiol. April 1, 2006; 127 (4): 355-8.

Conserved cis-elements in the Xenopus red opsin promoter necessary for cone-specific expression., Babu S, McIlvain V, Whitaker SL, Knox BE., FEBS Lett. February 20, 2006; 580 (5): 1479-84.

Conserved transcriptional activators of the Xenopus rhodopsin gene., Whitaker SL, Knox BE., J Biol Chem. November 19, 2004; 279 (47): 49010-8.                

Conserved transcriptional regulation of a cone phototransduction gene in vertebrates., Viczian AS, Verardo M, Zuber ME, Knox BE, Farber DB., FEBS Lett. November 5, 2004; 577 (1-2): 259-64.

Developmental regulation of calcium-dependent feedback in Xenopus rods., Solessio E, Mani SS, Cuenca N, Engbretson GA, Barlow RB, Knox BE., J Gen Physiol. November 1, 2004; 124 (5): 569-85.                  

Circadian modulation of temporal properties of the rod pathway in larval Xenopus., Solessio E, Scheraga D, Engbretson GA, Knox BE, Barlow RB., J Neurophysiol. November 1, 2004; 92 (5): 2672-84.

Quantification of the cytoplasmic spaces of living cells with EGFP reveals arrestin-EGFP to be in disequilibrium in dark adapted rod photoreceptors., Peet JA, Bragin A, Calvert PD, Nikonov SS, Mani S, Zhao X, Besharse JC, Pierce EA, Knox BE, Pugh EN., J Cell Sci. June 15, 2004; 117 (Pt 14): 3049-59.                

Heterologous expression of limulus rhodopsin., Knox BE, Salcedo E, Mathiesz K, Schaefer J, Chou WH, Chadwell LV, Smith WC, Britt SG, Barlow RB., J Biol Chem. October 17, 2003; 278 (42): 40493-502.

Disruption of kinesin II function using a dominant negative-acting transgene in Xenopus laevis rods results in photoreceptor degeneration., Lin-Jones J, Parker E, Wu M, Knox BE, Burnside B., Invest Ophthalmol Vis Sci. August 1, 2003; 44 (8): 3614-21.

Mouse cone arrestin gene characterization: promoter targets expression to cone photoreceptors., Zhu X, Ma B, Babu S, Murage J, Knox BE, Craft CM., FEBS Lett. July 31, 2002; 524 (1-3): 116-22.

The rod cGMP-phosphodiesterase beta-subunit promoter is a specific target for Sp4 and is not activated by other Sp proteins or CRX., Lerner LE, Gribanova YE, Whitaker L, Knox BE, Farber DB., J Biol Chem. July 19, 2002; 277 (29): 25877-83.

Serine 85 in transmembrane helix 2 of short-wavelength visual pigments interacts with the retinylidene Schiff base counterion., Dukkipati A, Vought BW, Singh D, Birge RR, Knox BE., Biochemistry. December 18, 2001; 40 (50): 15098-108.

Regulation of phototransduction in short-wavelength cone visual pigments via the retinylidene Schiff base counterion., Babu KR, Dukkipati A, Birge RR, Knox BE., Biochemistry. November 20, 2001; 40 (46): 13760-6.

Xenopus rhodopsin promoter. Identification of immediate upstream sequences necessary for high level, rod-specific transcription., Mani SS, Batni S, Whitaker L, Chen S, Engbretson G, Knox BE., J Biol Chem. September 28, 2001; 276 (39): 36557-65.

Nrl and Sp nuclear proteins mediate transcription of rod-specific cGMP-phosphodiesterase beta-subunit gene: involvement of multiple response elements., Lerner LE, Gribanova YE, Ji M, Knox BE, Farber DB., J Biol Chem. September 14, 2001; 276 (37): 34999-5007.        

Evidence of a tissue-restricting DNA regulatory element in the mouse IRBP promoter., Boatright JH, Knox BE, Jones KM, Stodulkova E, Nguyen HT, Padove SA, Borst DE, Nickerson JM., FEBS Lett. August 24, 2001; 504 (1-2): 27-30.

The photobleaching sequence of a short-wavelength visual pigment., Kusnetzow A, Dukkipati A, Babu KR, Singh D, Vought BW, Knox BE, Birge RR., Biochemistry. July 3, 2001; 40 (26): 7832-44.

Characterization of the primary photointermediates of Drosophila rhodopsin., Vought BW, Salcedo E, Chadwell LV, Britt SG, Birge RR, Knox BE., Biochemistry. November 21, 2000; 39 (46): 14128-37.

Xenopus rod photoreceptor: model for expression of retinal genes., Batni S, Mani SS, Schlueter C, Ji M, Knox BE., Methods Enzymol. January 1, 2000; 316 50-64.

Expression of phototransduction proteins in Xenopus oocytes., Knox BE, Barlow RB, Thompson DA, Swanson R, Nasi E., Methods Enzymol. January 1, 2000; 316 41-9.

Fluorescent photoreceptors of transgenic Xenopus laevis imaged in vivo by two microscopy techniques., Moritz OL, Tam BM, Knox BE, Papermaster DS., Invest Ophthalmol Vis Sci. December 1, 1999; 40 (13): 3276-80.

Photochemistry of the primary event in short-wavelength visual opsins at low temperature., Vought BW, Dukkipatti A, Max M, Knox BE, Birge RR., Biochemistry. August 31, 1999; 38 (35): 11287-97.

Immediate upstream sequence of arrestin directs rod-specific expression in Xenopus., Mani SS, Besharse JC, Knox BE., J Biol Chem. May 28, 1999; 274 (22): 15590-7.              

Cloning and expression of a Xenopus short wavelength cone pigment., Starace DM, Knox BE., Exp Eye Res. August 1, 1998; 67 (2): 209-20.

Transgene expression in Xenopus rods., Knox BE, Schlueter C, Sanger BM, Green CB, Besharse JC., FEBS Lett. February 20, 1998; 423 (2): 117-21.        

Activation of transducin by a Xenopus short wavelength visual pigment., Starace DM, Knox BE., J Biol Chem. January 10, 1997; 272 (2): 1095-100.

Limulus Retinal mRNA Induces Light-Dependent Currents in Xenopus Oocytes., Mole EJ, Schaefer J, Mathiesz K, Dionne VE, Knox BE, Barlow RB., Biol Bull. October 1, 1996; 191 (2): 264-265.

Characterization of the Xenopus rhodopsin gene., Batni S, Scalzetti L, Moody SA, Knox BE., J Biol Chem. February 9, 1996; 271 (6): 3179-86.              

Light-induced currents in Xenopus oocytes expressing bovine rhodopsin., Knox BE, Khorana HG, Nasi E., J Physiol. July 1, 1993; 466 157-72.

Expression of a bovine rhodopsin gene in Xenopus oocytes: demonstration of light-dependent ionic currents., Khorana HG, Knox BE, Nasi E, Swanson R, Thompson DA., Proc Natl Acad Sci U S A. November 1, 1988; 85 (21): 7917-21.

Page(s): 1