Results 1 - 50 of 50 results
Protein components of mitochondrial DNA nucleoids in higher eukaryotes. , Bogenhagen DF , Wang Y, Shen EL, Kobayashi R., Mol Cell Proteomics. November 1, 2003; 2 (11): 1205-16.
Purification of mitochondria for enzymes involved in nucleic acid transactions. , Bogenhagen DF ., Methods Mol Biol. January 1, 2002; 197 199-210.
Two forms of mitochondrial DNA ligase III are produced in Xenopus laevis oocytes. , Perez-Jannotti RM, Klein SM, Bogenhagen DF ., J Biol Chem. December 28, 2001; 276 (52): 48978-87.
Developmentally-regulated packaging of mitochondrial DNA by the HMG-box protein mtTFA during Xenopus oogenesis. , Shen EL, Bogenhagen DF ., Nucleic Acids Res. July 1, 2001; 29 (13): 2822-8.
Enzymology of mitochondrial base excision repair. , Bogenhagen DF , Pinz KG, Perez-Jannotti RM., Prog Nucleic Acid Res Mol Biol. January 1, 2001; 68 257-71.
Protein sequences conserved in prokaryotic aminoacyl- tRNA synthetases are important for the activity of the processivity factor of human mitochondrial DNA polymerase. , Carrodeguas JA, Bogenhagen DF ., Nucleic Acids Res. March 1, 2000; 28 (5): 1237-44.
The accessory subunit of Xenopus laevis mitochondrial DNA polymerase gamma increases processivity of the catalytic subunit of human DNA polymerase gamma and is related to class II aminoacyl- tRNA synthetases. , Carrodeguas JA, Kobayashi R, Lim SE, Copeland WC, Bogenhagen DF ., Mol Cell Biol. June 1, 1999; 19 (6): 4039-46.
The action of DNA ligase at abasic sites in DNA. , Bogenhagen DF , Pinz KG., J Biol Chem. April 3, 1998; 273 (14): 7888-93.
Efficient repair of abasic sites in DNA by mitochondrial enzymes. , Pinz KG, Bogenhagen DF ., Mol Cell Biol. March 1, 1998; 18 (3): 1257-65.
The HMG-box mitochondrial transcription factor xl- mtTFA binds DNA as a tetramer to activate bidirectional transcription. , Antoshechkin I, Bogenhagen DF , Mastrangelo IA., EMBO J. June 2, 1997; 16 (11): 3198-206.
Termination within oligo( dT) tracts in template DNA by DNA polymerase gamma occurs with formation of a DNA triplex structure and is relieved by mitochondrial single-stranded DNA-binding protein. , Mikhailov VS, Bogenhagen DF ., J Biol Chem. November 29, 1996; 271 (48): 30774-80.
Cloning and characterization of the gene for the somatic form of DNA topoisomerase I from Xenopus laevis. , Pandit SD, Richard RE, Sternglanz R, Bogenhagen DF ., Nucleic Acids Res. September 15, 1996; 24 (18): 3593-600.
Effects of Xenopus laevis mitochondrial single-stranded DNA-binding protein on primer-template binding and 3'-->5' exonuclease activity of DNA polymerase gamma. , Mikhailov VS, Bogenhagen DF ., J Biol Chem. August 2, 1996; 271 (31): 18939-46.
Interaction of mtTFB and mtRNA polymerase at core promoters for transcription of Xenopus laevis mtDNA. , Bogenhagen DF ., J Biol Chem. May 17, 1996; 271 (20): 12036-41.
The gamma subfamily of DNA polymerases: cloning of a developmentally regulated cDNA encoding Xenopus laevis mitochondrial DNA polymerase gamma. , Ye F, Carrodeguas JA, Bogenhagen DF ., Nucleic Acids Res. April 15, 1996; 24 (8): 1481-8.
Distinct roles for two purified factors in transcription of Xenopus mitochondrial DNA. , Antoshechkin I, Bogenhagen DF ., Mol Cell Biol. December 1, 1995; 15 (12): 7032-42.
Action of mitochondrial DNA polymerase gamma at sites of base loss or oxidative damage. , Pinz KG, Shibutani S, Bogenhagen DF ., J Biol Chem. April 21, 1995; 270 (16): 9202-6.
Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: an alternative pathway of base excision DNA repair. , Matsumoto Y, Kim K, Bogenhagen DF ., Mol Cell Biol. September 1, 1994; 14 (9): 6187-97.
Proteolytic footprinting of transcription factor TFIIIA reveals different tightly binding sites for 5S RNA and 5S DNA. , Bogenhagen DF ., Mol Cell Biol. September 1, 1993; 13 (9): 5149-58.
Binding of TFIIIA to derivatives of 5S RNA containing sequence substitutions or deletions defines a minimal TFIIIA binding site. , Bogenhagen DF , Sands MS., Nucleic Acids Res. June 11, 1992; 20 (11): 2639-45.
Acetylaminofluorene and aminofluorene adducts inhibit in vitro transcription of a Xenopus 5S RNA gene only when located on the coding strand. , Chen YH , Matsumoto Y, Shibutani S, Bogenhagen DF ., Proc Natl Acad Sci U S A. November 1, 1991; 88 (21): 9583-7.
Repair of a synthetic abasic site involves concerted reactions of DNA synthesis followed by excision and ligation. , Matsumoto Y, Bogenhagen DF ., Mol Cell Biol. September 1, 1991; 11 (9): 4441-7.
The 165-kDa DNA topoisomerase I from Xenopus laevis oocytes is a tissue-specific variant. , Richard RE, Bogenhagen DF ., Dev Biol. July 1, 1991; 146 (1): 4-11.
Two zinc finger proteins from Xenopus laevis bind the same region of 5S RNA but with different nuclease protection patterns. , Sands MS, Bogenhagen DF ., Nucleic Acids Res. April 25, 1991; 19 (8): 1797-803.
The carboxyterminal zinc fingers of TFIIIA interact with the tip of helix V of 5S RNA in the 7S ribonucleoprotein particle. , Sands MS, Bogenhagen DF ., Nucleic Acids Res. April 25, 1991; 19 (8): 1791-6.
Mapping light strand transcripts near the origin of replication of Xenopus laevis mitochondrial DNA. , Bogenhagen DF , Morvillo MV., Nucleic Acids Res. November 11, 1990; 18 (21): 6377-83.
DNA polymerase gamma from Xenopus laevis. II. A 3'----5' exonuclease is tightly associated with the DNA polymerase activity. , Insdorf NF, Bogenhagen DF ., J Biol Chem. December 25, 1989; 264 (36): 21498-503.
DNA polymerase gamma from Xenopus laevis. I. The identification of a high molecular weight catalytic subunit by a novel DNA polymerase photolabeling procedure. , Insdorf NF, Bogenhagen DF ., J Biol Chem. December 25, 1989; 264 (36): 21491-7.
Quantitation of type II topoisomerase in oocytes and eggs of Xenopus laevis. , Luke M, Bogenhagen DF ., Dev Biol. December 1, 1989; 136 (2): 459-68.
Repair of a synthetic abasic site in DNA in a Xenopus laevis oocyte extract. , Matsumoto Y, Bogenhagen DF ., Mol Cell Biol. September 1, 1989; 9 (9): 3750-7.
A high molecular weight topoisomerase I from Xenopus laevis ovaries. , Richard RE, Bogenhagen DF ., J Biol Chem. March 15, 1989; 264 (8): 4704-9.
Template sequences required for transcription of Xenopus laevis mitochondrial DNA from two bidirectional promoters. , Bogenhagen DF , Romanelli MF., Mol Cell Biol. July 1, 1988; 8 (7): 2917-24.
Purification of Xenopus laevis mitochondrial RNA polymerase and identification of a dissociable factor required for specific transcription. , Bogenhagen DF , Insdorf NF., Mol Cell Biol. July 1, 1988; 8 (7): 2910-6.
TFIIIA binds with equal affinity to somatic and major oocyte 5S RNA genes. , McConkey GA, Bogenhagen DF ., Genes Dev. February 1, 1988; 2 (2): 205-14.
TFIIIA binds to different domains of 5S RNA and the Xenopus borealis 5S RNA gene. , Sands MS, Bogenhagen DF ., Mol Cell Biol. November 1, 1987; 7 (11): 3985-93.
Transition mutations within the Xenopus borealis somatic 5S RNA gene can have independent effects on transcription and TFIIIA binding. , McConkey GA, Bogenhagen DF ., Mol Cell Biol. January 1, 1987; 7 (1): 486-94.
Accurate in vitro transcription of Xenopus laevis mitochondrial DNA from two bidirectional promoters. , Bogenhagen DF , Yoza BK., Mol Cell Biol. July 1, 1986; 6 (7): 2543-50.
Identification of initiation sites for transcription of Xenopus laevis mitochondrial DNA. , Bogenhagen DF , Yoza BK, Cairns SS., J Biol Chem. June 25, 1986; 261 (18): 8488-94.
Mapping of the displacement loop within the nucleotide sequence of Xenopus laevis mitochondrial DNA. , Cairns SS, Bogenhagen DF ., J Biol Chem. June 25, 1986; 261 (18): 8481-7.
The intragenic control region of the Xenopus 5 S RNA gene contains two factor A binding domains that must be aligned properly for efficient transcription initiation. , Bogenhagen DF ., J Biol Chem. May 25, 1985; 260 (10): 6466-71.
Binding of Xenopus transcription factor A to 5S RNA and to single stranded DNA. , Hanas JS, Bogenhagen DF , Wu CW ., Nucleic Acids Res. March 26, 1984; 12 (6): 2745-58.
DNA unwinding ability of Xenopus transcription factor A. , Hanas JS, Bogenhagen DF , Wu CW ., Nucleic Acids Res. January 25, 1984; 12 (2): 1265-76.
Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene. , Hanas JS, Hazuda DJ, Bogenhagen DF , Wu FY, Wu CW ., J Biol Chem. December 10, 1983; 258 (23): 14120-5.
Purified RNA polymerase III accurately and efficiently terminates transcription of 5S RNA genes. , Cozzarelli NR, Gerrard SP, Schlissel M, Brown DD , Bogenhagen DF ., Cell. October 1, 1983; 34 (3): 829-35.
Cooperative model for the binding of Xenopus transcription factor A to the 5S RNA gene. , Hanas JS, Bogenhagen DF , Wu CW ., Proc Natl Acad Sci U S A. April 1, 1983; 80 (8): 2142-5.
Stable transcription complexes of Xenopus 5S RNA genes: a means to maintain the differentiated state. , Bogenhagen DF , Wormington WM, Brown DD ., Cell. February 1, 1982; 28 (2): 413-21.
A quantitative assay for Xenopus 5S RNA gene transcription in vitro. , Wormington WM, Bogenhagen DF , Jordan E, Brown DD ., Cell. June 1, 1981; 24 (3): 809-17.
Nucleotide sequences in Xenopus 5S DNA required for transcription termination. , Bogenhagen DF , Brown DD ., Cell. April 1, 1981; 24 (1): 261-70.
A control region in the center of the 5S RNA gene directs specific initiation of transcription: II. The 3'' border of the region. , Bogenhagen DF , Sakonju S, Brown DD ., Cell. January 1, 1980; 19 (1): 27-35.
A control region in the center of the 5S RNA gene directs specific initiation of transcription: I. The 5' border of the region. , Sakonju S, Bogenhagen DF , Brown DD ., Cell. January 1, 1980; 19 (1): 13-25.