Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14672) Expression Attributions Wiki
XB-ANAT-213

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Expression of two Xenopus laevis ribosomal protein genes in injected frog oocytes. A specific splicing block interferes with the L1 RNA maturation., Bozzoni I., J Mol Biol. December 25, 1984; 180 (4): 987-1005.


Comparison of structural requirements of alpha-MSH and ACTH for inducing excessive grooming and pigment dispersion., Spruijt BM., Peptides. January 1, 1985; 6 (6): 1185-9.


[Inductive effect of the eye tissues of adult clawed toads on the gastrula ectoderm]., Golubeva ON., Ontogenez. January 1, 1985; 16 (4): 389-97.


The effect of calcitonin on the prechordal mesoderm, neural plate and neural crest of Xenopus embryos., Burgess AM., J Anat. January 1, 1985; 140 ( Pt 1) 49-55.


The development of the dendritic organization of primary and secondary motoneurons in the spinal cord of Xenopus laevis. An HRP study., van Mier P., Anat Embryol (Berl). January 1, 1985; 172 (3): 311-24.


Alteration of the anterior-posterior embryonic axis: the pattern of gastrulation in macrocephalic frog embryos., Kao KR., Dev Biol. January 1, 1985; 107 (1): 239-51.


Innervation pattern of muscles of one-legged Xenopus laevis supplied by motoneurons from both sides of the spinal cord., Denton CJ., Dev Biol. January 1, 1985; 349 (1-2): 85-94.


Protein accumulation in the cell nucleus., Dingwall C., Biochem Soc Symp. January 1, 1985; 50 193-204.


Expression of acetylcholinesterase gene(s) in the human brain: molecular cloning evidence for cross-homologous sequences., Zevin-Sonkin D., J Physiol (Paris). January 1, 1985; 80 (4): 221-8.


Does the amphibian eye have an ocular oxygen-concentrating mechanism?, Toews DP., Exp Biol. January 1, 1985; 43 (3): 179-82.


Electron probe x-ray microanalysis studies on the ionic environment of nuclei and the maintenance of chromatin structure., Cameron IL., Prog Clin Biol Res. January 1, 1985; 196 223-39.


Environmental influence on shape of the crystalline lens: the amphibian example., Sivak JG., Exp Biol. January 1, 1985; 44 (1): 29-40.


Growth cones and the formation of central and peripheral neurites by sensory neurones in amphibian embryos., Roberts A., J Neurosci Res. January 1, 1985; 13 (1-2): 23-38.


All components required for the eventual activation of muscle-specific actin genes are localized in the subequatorial region of an uncleaved amphibian egg., Gurdon JB., Proc Natl Acad Sci U S A. January 1, 1985; 82 (1): 139-43.


Growth cones of developing retinal cells in vivo, on culture surfaces, and in collagen matrices., Harris WA., J Neurosci Res. January 1, 1985; 13 (1-2): 101-22.


Biochemical specificity of Xenopus notochord., Smith JC., Differentiation. January 1, 1985; 29 (2): 109-15.          


Microtubules during germinal vesicle breakdown (GVBD) of Xenopus oocytes: effect of Ca2+ ionophore A-23187 and taxol., Huchon D., Reprod Nutr Dev. January 1, 1985; 25 (2): 465-79.


Clonal analysis and cell lineages of the vertebrate central nervous system., Jacobson M., Annu Rev Neurosci. January 1, 1985; 8 71-102.


Nuclear segregation of U2 snRNA requires binding of specific snRNP proteins., Mattaj IW., Cell. January 1, 1985; 40 (1): 111-8.


Specific changes in axonally transported proteins during regeneration of the frog (Xenopus laevis) optic nerve., Szaro BG., J Neurosci. January 1, 1985; 5 (1): 192-208.


Subcellular flux of potassium and rubidium in amphibian oocytes., Cameron IL., Physiol Chem Phys Med NMR. January 1, 1985; 17 (2): 173-81.


Development of early brainstem projections to the tail spinal cord of Xenopus., Nordlander RH., J Comp Neurol. January 22, 1985; 231 (4): 519-29.


A transient inward current elicited by hyperpolarization during serotonin activation in Xenopus oocytes., Parker I., Proc R Soc Lond B Biol Sci. January 22, 1985; 223 (1232): 279-92.


The distribution of fibres in the optic tract after contralateral translocation of an eye in Xenopus., Taylor JS., J Embryol Exp Morphol. February 1, 1985; 85 225-38.


Motor hypoactivity induced by neurotensin and related peptides in mice., Meisenberg G., Pharmacol Biochem Behav. February 1, 1985; 22 (2): 189-93.


Nuclear-cytoplasmic interactions affecting DNA synthesis during induced cardiac muscle growth in the rat., Bugaisky LB., Cardiovasc Res. February 1, 1985; 19 (2): 89-94.


The development of the nucleus isthmi in Xenopus laevis. I. Cell genesis and the formation of connections with the tectum., Udin SB., J Comp Neurol. February 1, 1985; 232 (1): 25-35.


The tissue-specific chicken histone H5 gene is transcribed with fidelity in Xenopus laevis oocytes., Wigley PL., J Mol Biol. February 5, 1985; 181 (3): 449-52.


Pharmacological modification of the light-induced responses of Müller (glial) cells in the amphibian retina., Witkovsky P., Dev Biol. February 25, 1985; 328 (1): 111-20.


Synthesis of bunyavirus-specific proteins in a continuous cell line (XTC-2) derived from Xenopus laevis., Watret GE., J Gen Virol. March 1, 1985; 66 ( Pt 3) 473-82.


Occurrence of a species-specific nuclear antigen in the germ line of Xenopus and its expression from paternal genes in hybrid frogs., Wedlich D., Dev Biol. March 1, 1985; 108 (1): 220-34.                


Intertectal neuronal plasticity in Xenopus laevis: persistence despite catecholamine depletion., Udin SB., Dev Biol. March 1, 1985; 351 (1): 81-8.


A human acetylcholinesterase gene identified by homology to the Ace region of Drosophila., Soreq H., Proc Natl Acad Sci U S A. March 1, 1985; 82 (6): 1827-31.


Identification of the sequence responsible for the nuclear accumulation of the influenza virus nucleoprotein in Xenopus oocytes., Davey J., Cell. March 1, 1985; 40 (3): 667-75.


Growth and death of cells of the mesencephalic fifth nucleus in Xenopus laevis larvae., Kollros JJ., J Comp Neurol. March 22, 1985; 233 (4): 481-9.


Retrograde degeneration of myelinated axons and re-organization in the optic nerves of adult frogs (Xenopus laevis) following nerve injury or tectal ablation., Bohn RC., J Neurocytol. April 1, 1985; 14 (2): 221-44.


Effect of concanavalin A and vegetalizing factor on the outer and inner ectoderm layers of early gastrulae of Xenopus laevis after treatment with cytochalasin B., Grunz H., Cell Differ. April 1, 1985; 16 (2): 83-92.


Regulation in the neural plate of Xenopus laevis demonstrated by genetic markers., Szaro B., J Exp Zool. April 1, 1985; 234 (1): 117-29.


Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. III. The role of thyroxine., Hoskins SG., J Neurosci. April 1, 1985; 5 (4): 930-40.


Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. II. Ingrowth of optic nerve fibers and production of ipsilaterally projecting retinal ganglion cells., Hoskins SG., J Neurosci. April 1, 1985; 5 (4): 920-9.


Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. I. Retinal distribution of ipsilaterally projecting cells in normal and experimentally manipulated frogs., Hoskins SG., J Neurosci. April 1, 1985; 5 (4): 911-9.


Relation of retinomotor responses and contractile proteins in vertebrate retinas., Drenckhahn D., Eur J Cell Biol. May 1, 1985; 37 156-68.


Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis., Benavente R., Cell. May 1, 1985; 41 (1): 177-90.                      


The growth of motor axons in the spinal cord of Xenopus embryos., Westerfield M., Dev Biol. May 1, 1985; 109 (1): 96-101.


Reciprocal inhibitory interneurones in the Xenopus embryo spinal cord., Dale N., J Physiol. June 1, 1985; 363 61-70.


Eye-specific segregation of optic afferents in mammals, fish, and frogs: the role of activity., Schmidt JT., Cell Mol Neurobiol. June 1, 1985; 5 (1-2): 5-34.


Dynamics of tubulin structures in Xenopus laevis oogenesis., Palecek J., J Embryol Exp Morphol. June 1, 1985; 87 75-86.        


The role of visual experience in the formation of binocular projections in frogs., Udin SB., Cell Mol Neurobiol. June 1, 1985; 5 (1-2): 85-102.


Formation of retinotopic connections: selective stabilization by an activity-dependent mechanism., Schmidt JT., Cell Mol Neurobiol. June 1, 1985; 5 (1-2): 65-84.


Dual-component amino-acid-mediated synaptic potentials: excitatory drive for swimming in Xenopus embryos., Dale N., J Physiol. June 1, 1985; 363 35-59.

???pagination.result.page??? ???pagination.result.prev??? 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ???pagination.result.next???