Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (10397) Expression Attributions Wiki
XB-ANAT-111

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Protein synthesis and messenger RNA levels along the animal-vegetal axis during early Xenopus development., Smith RC., J Embryol Exp Morphol. June 1, 1986; 95 15-35.


Retinoic acid inhibits junctional communication between animal cells., Pitts JD., Carcinogenesis. June 1, 1986; 7 (6): 1003-10.


Concanavalin A prevents acetylcholine receptor redistribution in Xenopus nerve-muscle cultures., Kidokoro Y., J Neurosci. July 1, 1986; 6 (7): 1941-51.


Normal maturation involves systematic changes in binocular visual connections in Xenopus laevis., Grant S., Nature. July 17, 1986; 322 (6076): 258-61.


Lithium-induced respecification of pattern in Xenopus laevis embryos., Kao KR., Nature. July 24, 1986; 322 (6077): 371-3.


Induction of neural cell adhesion molecule (NCAM) in Xenopus embryos., Jacobson M., Dev Biol. August 1, 1986; 116 (2): 524-31.            


Major transitions in histone gene expression do not occur during development in Xenopus laevis., Perry M., Dev Biol. August 1, 1986; 116 (2): 532-8.


Descending projections and excitation during fictive swimming in Xenopus embryos: neuroanatomy and lesion experiments., Roberts A., J Comp Neurol. August 8, 1986; 250 (2): 253-61.


Optic fibers follow aberrant pathways from rotated eyes in Xenopus laevis., Grant P., J Comp Neurol. August 15, 1986; 250 (3): 364-76.


Organisation of Xenopus egg cytoplasm: response to simulated microgravity., Smith RC., J Exp Zool. September 1, 1986; 239 (3): 365-78.


Covalent coupling of neuralizing factors from Xenopus to Sepharose beads: no decrease of inducing activity., Born J., Cell Differ. September 1, 1986; 19 (2): 97-101.


The retinotectal projection of quarter eyes in Xenopus laevis., Degen N., Dev Biol. September 1, 1986; 394 (1): 141-3.


Sequential expression of murine homeo box genes during F9 EC cell differentiation., Breier G., EMBO J. September 1, 1986; 5 (9): 2209-15.


The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis., Godsave SF., J Embryol Exp Morphol. September 1, 1986; 97 201-23.              


The inducing capacity of the presumptive endoderm of Xenopus laevis studied by transfilter experiments., Grunz H., Rouxs Arch Dev Biol. September 1, 1986; 195 (7): 467-473.


Messenger RNA coding for only the alpha subunit of the rat brain Na channel is sufficient for expression of functional channels in Xenopus oocytes., Goldin AL., Proc Natl Acad Sci U S A. October 1, 1986; 83 (19): 7503-7.


The direction of cleavage waves and the regional variation in the duration of cleavage cycles on the dorsal side of the Xenopus laevis blastula., Boterenbrood EC., Rouxs Arch Dev Biol. October 1, 1986; 195 (8): 484-488.


Detection of inhibitors of protein and nucleic acid synthesis using oocytes of Xenopus laevis microinjected with the herpes thymidine kinase gene., Courchesne CL., Chem Biol Interact. October 15, 1986; 60 (1): 13-30.


Increased hyaluronate synthesis is required for fibroblast detachment and mitosis., Brecht M., Biochem J. October 15, 1986; 239 (2): 445-50.


Neurites show pathway specificity but lack directional specificity or predetermined lengths in Xenopus embryos., Huang S., J Neurobiol. November 1, 1986; 17 (6): 593-603.


Cell proliferation in the ectoderm of the Xenopus embryo: development of substratum requirements for cytokinesis., Winklbauer R., Dev Biol. November 1, 1986; 118 (1): 70-81.


Level of histone H4 mRNA in Xenopus laevis embryonic cells cultured in the absence of cell adhesion., Atsuchi Y., J Embryol Exp Morphol. November 1, 1986; 98 175-85.


Pigment cell pattern formation in amphibian embryos: a reexamination of the dopa technique., Tucker RP., J Exp Zool. November 1, 1986; 240 (2): 173-82.


Modification of Dorsal-Ventral Polarity in Xenopus laevis Embryos Following Withdrawal of Egg Contents before First Cleavage: (Dorsal-ventral Polarity/Xenopus laevis/Cytoplasmic exudation/Pricking)., Wakahara M., Dev Growth Differ. November 1, 1986; 28 (6): 543-554.


Prospective Neural Areas and Their Morphogenetic Movements during Neural Plate Formation of Xenopus Embryos. I. Development of Vegetal Half Embryos and Chimera Embryos: (developmental fates/cell marker, quinacrine/Xenopus embryo)., Suzuki AS., Dev Growth Differ. November 1, 1986; 28 (6): 519-529.


Inhibitory neurones of a motor pattern generator in Xenopus revealed by antibodies to glycine., Dale N., Nature. November 20, 1986; 324 (6094): 255-7.


Tissue-specific expression of actin genes injected into Xenopus embryos., Wilson C., Cell. November 21, 1986; 47 (4): 589-99.


Heat-shock gene expression in animal embryonic systems., Heikkila JJ., Can J Genet Cytol. December 1, 1986; 28 (6): 1093-105.


Principles of organization of the vertebrate olfactory glomerulus: an hypothesis., Graziadei PP., Neuroscience. December 1, 1986; 19 (4): 1025-35.


Upstream sequences required for tissue-specific activation of the cardiac actin gene in Xenopus laevis embryos., Mohun TJ., EMBO J. December 1, 1986; 5 (12): 3185-93.


Eye factors and lens-forming transformations of outer cornea in Xenopus laevis larvae., Bosco L., J Exp Zool. December 1, 1986; 240 (3): 401-7.


Presumptive mesoderm cells from Xenopus laevis gastrulae attach to and migrate on substrata coated with fibronectin or laminin., Nakatsuji N., J Cell Sci. December 1, 1986; 86 109-18.


Expression of the c-myc proto-oncogene during development of Xenopus laevis., King MW, King MW., Mol Cell Biol. December 1, 1986; 6 (12): 4499-508.


A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation., Skalli O., J Cell Biol. December 1, 1986; 103 (6 Pt 2): 2787-96.


Nucleotide sequence of the goat embryonic alpha globin gene (zeta) and linkage and evolutionary analysis of the complete alpha globin cluster., Wernke SM., J Mol Biol. December 5, 1986; 192 (3): 457-71.


Differential and stage-related expression in embryonic tissues of a new human homoeobox gene., Mavilio F., Nature. December 18, 1986; 324 (6098): 664-8.


The clam embryo protein cyclin A induces entry into M phase and the resumption of meiosis in Xenopus oocytes., Swenson KI., Cell. December 26, 1986; 47 (6): 861-70.


[Rearrangement of the morphological structure and degradation of the extracellular matrix in amphibian embryos after short-term disruption of cell contacts]., Georgiev PG., Ontogenez. January 1, 1987; 18 (5): 535-40.


A mesoderm-inducing factor is produced by Xenopus cell line., Smith JC., Development. January 1, 1987; 99 (1): 3-14.              


Reexamination of the 'regulative development' of amphibian embryos., Yamana K., Cell Differ. January 1, 1987; 20 (1): 3-10.


A sharp retinal image increases the topographic precision of the goldfish retinotectal projection during optic nerve regeneration in stroboscopic light., Cook JE., Exp Brain Res. January 1, 1987; 68 (2): 319-28.


Ionic and pharmacological properties of reciprocal inhibition in Xenopus embryo motoneurones., Soffe SR., J Physiol. January 1, 1987; 382 463-73.


Differentiation of neural crest cells of Xenopus laevis in clonal culture., Akira E., Pigment Cell Res. January 1, 1987; 1 (1): 28-36.


Cell behaviour during active cell rearrangement: evidence and speculations., Keller R., J Cell Sci Suppl. January 1, 1987; 8 369-93.


The histone H1(0)/H5 variant and terminal differentiation of cells during development of Xenopus laevis., Moorman AF., Differentiation. January 1, 1987; 35 (2): 100-7.            


The use of antibodies to gap junction protein to explore the role of gap junctional communication during development., Warner AE., Ciba Found Symp. January 1, 1987; 125 154-67.


Segregation of mitochondria in the cytoplasm of Xenopus vitellogenic oocytes., Mignotte F., Biol Cell. January 1, 1987; 60 (2): 97-102.


The use of Xenopus oocytes for the study of ion channels., Dascal N., CRC Crit Rev Biochem. January 1, 1987; 22 (4): 317-87.


Fates of the blastomeres of the 16-cell stage Xenopus embryo., Moody SA., Dev Biol. February 1, 1987; 119 (2): 560-78.        


Changes in states of commitment of single animal pole blastomeres of Xenopus laevis., Snape A., Dev Biol. February 1, 1987; 119 (2): 503-10.

???pagination.result.page??? ???pagination.result.prev??? 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ???pagination.result.next???