Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (704) Expression Attributions Wiki
XB-ANAT-772

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Microinjection of DNA into Eyebuds in Xenopus laevis Embryos and Imaging of GFP Expressing Optic Axonal Arbors in Intact, Living Xenopus Tadpoles., Dao S., J Vis Exp. September 4, 2019; (151):


Intrinsic temporal tuning of neurons in the optic tectum is shaped by multisensory experience., Busch SE., J Neurophysiol. September 1, 2019; 122 (3): 1084-1096.


The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism., Yang JJ., eNeuro. April 9, 2019; 6 (2):                   


Noncanonical Modulation of the eIF2 Pathway Controls an Increase in Local Translation during Neural Wiring., Cagnetta R., Mol Cell. February 7, 2019; 73 (3): 474-489.e5.                


Enhanced visual experience rehabilitates the injured brain in Xenopus tadpoles in an NMDAR-dependent manner., Gambrill AC., J Neurophysiol. January 1, 2019; 121 (1): 306-320.


Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development., Kim Y., Epigenetics Chromatin. December 6, 2018; 11 (1): 72.                


Mutations in Kinesin family member 6 reveal specific role in ependymal cell ciliogenesis and human neurological development., Konjikusic MJ., PLoS Genet. November 6, 2018; 14 (11): e1007817.              


Development of an Acute Method to Deliver Transgenes Into the Brains of Adult Xenopus laevis., Yamaguchi A., Front Neural Circuits. October 26, 2018; 12 92.                


DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring., Santos RA., Neural Dev. September 15, 2018; 13 (1): 22.                  


Tectal CRFR1 receptors modulate food intake and feeding behavior in the South African clawed frog Xenopus laevis., Prater CM., Horm Behav. September 1, 2018; 105 86-94.


Excitatory synaptic dysfunction cell-autonomously decreases inhibitory inputs and disrupts structural and functional plasticity., He HY., Nat Commun. July 24, 2018; 9 (1): 2893.                


Location and functions of Inebriated in the Drosophila eye., Borycz J., Biol Open. July 23, 2018; 7 (7):                 


Microvascular anatomy of the brain of the adult pipid frog, Xenopus laevis (Daudin): A scanning electron microscopic study of vascular corrosion casts., Lametschwandtner A., J Morphol. July 1, 2018; 279 (7): 950-969.                                                                                              


Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles., Gambrill AC., J Neurophysiol. May 1, 2018; 119 (5): 1947-1961.


Preparations and Protocols for Whole Cell Patch Clamp Recording of Xenopus laevis Tectal Neurons., Liu Z., J Vis Exp. March 15, 2018; (133):


Axon-Axon Interactions Regulate Topographic Optic Tract Sorting via CYFIP2-Dependent WAVE Complex Function., Cioni JM., Neuron. March 7, 2018; 97 (5): 1078-1093.e6.                            


Tectal corticotropin-releasing factor (CRF) neurons respond to fasting and a reactive stressor in the African Clawed Frog, Xenopus laevis., Prater CM., Gen Comp Endocrinol. March 1, 2018; 258 91-98.


Developmental changes in spinal neuronal properties, motor network configuration, and neuromodulation at free-swimming stages of Xenopus tadpoles., Currie SP., J Neurophysiol. March 1, 2018; 119 (3): 786-795.


Role of the visual experience-dependent nascent proteome in neuronal plasticity., Liu HH., Elife. February 7, 2018; 7                     


Sequence and timing of early cranial skeletal development in Xenopus laevis., Lukas P., J Morphol. January 1, 2018; 279 (1): 62-74.            


The brain is required for normal muscle and nerve patterning during early Xenopus development., Herrera-Rincon C., Nat Commun. September 25, 2017; 8 (1): 587.              


Visual experience dependent regulation of neuronal structure and function by histone deacetylase 1 in developing Xenopus tectum in vivo., Ruan H., Dev Neurobiol. September 1, 2017; 77 (8): 947-962.


RNA Docking and Local Translation Regulate Site-Specific Axon Remodeling In Vivo., Wong HH., Neuron. August 16, 2017; 95 (4): 852-868.e8.                


In Vivo Analysis of the Neurovascular Niche in the Developing Xenopus Brain., Lau M., eNeuro. July 31, 2017; 4 (4):                           


Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit., Hawkins SJ., Front Cell Neurosci. July 21, 2017; 11 380.            


The Gliotransmitter d-Serine Promotes Synapse Maturation and Axonal Stabilization In Vivo., Van Horn MR., J Neurosci. June 28, 2017; 37 (26): 6277-6288.                


Translational profiling of retinal ganglion cell optic nerve regeneration in Xenopus laevis., Whitworth GB., Dev Biol. June 15, 2017; 426 (2): 360-373.              


Comparative analysis of monoaminergic cerebrospinal fluid-contacting cells in Osteichthyes (bony vertebrates)., Xavier AL., J Comp Neurol. June 15, 2017; 525 (9): 2265-2283.                        


Distinct cis-acting regions control six6 expression during eye field and optic cup stages of eye formation., Ledford KL., Dev Biol. June 15, 2017; 426 (2): 418-428.                        


A cellular mechanism for inverse effectiveness in multisensory integration., Truszkowski TL., Elife. March 18, 2017; 6       


Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis., Morona R., J Comp Neurol. March 1, 2017; 525 (4): 715-752.                                            


The Nedd4 binding protein 3 is required for anterior neural development in Xenopus laevis., Kiem LM., Dev Biol. March 1, 2017; 423 (1): 66-76.                            


Reversible developmental stasis in response to nutrient availability in the Xenopus laevis central nervous system., McKeown CR., J Exp Biol. February 1, 2017; 220 (Pt 3): 358-368.


Spinal cord regeneration in Xenopus laevis., Edwards-Faret G., Nat Protoc. February 1, 2017; 12 (2): 372-389.      


miR-182 Regulates Slit2-Mediated Axon Guidance by Modulating the Local Translation of a Specific mRNA., Bellon A., Cell Rep. January 31, 2017; 18 (5): 1171-1186.                              


Hermes Regulates Axon Sorting in the Optic Tract by Post-Trancriptional Regulation of Neuropilin 1., Hörnberg H., J Neurosci. December 14, 2016; 36 (50): 12697-12706.        


Mapping neurogenesis onset in the optic tectum of Xenopus laevis., Herrgen L., Dev Neurobiol. December 1, 2016; 76 (12): 1328-1341.              


Early development and function of the Xenopus tadpole retinotectal circuit., Liu Z., Curr Opin Neurobiol. December 1, 2016; 41 17-23.


Mechanosensing is critical for axon growth in the developing brain., Koser DE., Nat Neurosci. December 1, 2016; 19 (12): 1592-1598.                  


Emergence of Selectivity to Looming Stimuli in a Spiking Network Model of the Optic Tectum., Jang EV., Front Neural Circuits. November 24, 2016; 10 95.            


An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum., Hamodi AS., Elife. November 23, 2016; 5                   


Mechanism and Regulation of DNA-Protein Crosslink Repair by the DNA-Dependent Metalloprotease SPRTN., Stingele J., Mol Cell. November 17, 2016; 64 (4): 688-703.                


Experience-dependent plasticity of excitatory and inhibitory intertectal inputs in Xenopus tadpoles., Gambrill AC., J Neurophysiol. November 1, 2016; 116 (5): 2281-2297.


Thyroid Hormone Acts Locally to Increase Neurogenesis, Neuronal Differentiation, and Dendritic Arbor Elaboration in the Tadpole Visual System., Thompson CK., J Neurosci. October 5, 2016; 36 (40): 10356-10375.


Increased apoptosis and abnormal visual behavior by histone modifications with exposure to para-xylene in developing Xenopus., Gao J., Neuroscience. September 7, 2016; 331 177-85.


Expression of the insulinoma-associated 1 (insm1) gene in Xenopus laevis tadpole retina and brain., Bosse JL., Gene Expr Patterns. September 1, 2016; 22 (1): 26-29.        


Fragile X mental retardation protein knockdown in the developing Xenopus tadpole optic tectum results in enhanced feedforward inhibition and behavioral deficits., Truszkowski TL., Neural Dev. August 8, 2016; 11 (1): 14.          


Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells., Miraucourt LS., Elife. August 8, 2016; 5                     


Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis., Liu HH., J Neurosci. July 6, 2016; 36 (27): 7325-39.


Recording Temperature-induced Neuronal Activity through Monitoring Calcium Changes in the Olfactory Bulb of Xenopus laevis., Brinkmann A., J Vis Exp. June 3, 2016; (112):   

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 ???pagination.result.next???