Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (404) Expression Attributions Wiki
XB-ANAT-3987

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Defining progressive stages in the commitment process leading to embryonic lens formation., Jin H., Genesis. October 1, 2012; 50 (10): 728-40.              


Cataract-associated D3Y mutation of human connexin46 (hCx46) increases the dye coupling of gap junction channels and suppresses the voltage sensitivity of hemichannels., Schlingmann B., J Bioenerg Biomembr. October 1, 2012; 44 (5): 607-14.


Antagonistic cross-regulation between Wnt and Hedgehog signalling pathways controls post-embryonic retinal proliferation., Borday C., Development. October 1, 2012; 139 (19): 3499-509.                    


Cartilage on the move: cartilage lineage tracing during tadpole metamorphosis., Kerney RR., Dev Growth Differ. October 1, 2012; 54 (8): 739-52.                      


Transgenic Xenopus laevis with the ef1-α promoter as an experimental tool for amphibian retinal regeneration study., Ueda Y., Genesis. August 1, 2012; 50 (8): 642-50.            


Metabolic differentiation in the embryonic retina., Agathocleous M., Nat Cell Biol. August 1, 2012; 14 (8): 859-64.        


Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning., Steventon B., Dev Biol. July 1, 2012; 367 (1): 55-65.                


Mutations in IRX5 impair craniofacial development and germ cell migration via SDF1., Bonnard C., Nat Genet. May 13, 2012; 44 (6): 709-13.    


Visuospatial information in the retinotectal system of xenopus before correct image formation by the developing eye., Richards BA., Dev Neurobiol. April 1, 2012; 72 (4): 507-19.


Transcription factors involved in lens development from the preplacodal ectoderm., Ogino H., Dev Biol. March 15, 2012; 363 (2): 333-47.      


Simple, fast, tissue-specific bacterial artificial chromosome transgenesis in Xenopus., Fish MB., Genesis. March 1, 2012; 50 (3): 307-15.        


Histology of plastic embedded amphibian embryos and larvae., Kurth T., Genesis. March 1, 2012; 50 (3): 235-50.                                


Histological observation on unique phenotypes of malformation induced in Xenopus tropicalis larvae by tributyltin., Liu J., J Environ Sci (China). January 1, 2012; 24 (2): 195-202.


Regulation of XFGF8 gene expression through SRY (sex-determining region Y)-box 2 in developing Xenopus embryos., Kim YH., Reprod Fertil Dev. January 1, 2012; 24 (6): 769-77.


Activity-based labeling of matrix metalloproteinases in living vertebrate embryos., Keow JY., PLoS One. January 1, 2012; 7 (8): e43434.              


Cataracts and microphthalmia caused by a Gja8 mutation in extracellular loop 2., Xia CH., PLoS One. January 1, 2012; 7 (12): e52894.          


Origin and segregation of cranial placodes in Xenopus laevis., Pieper M., Dev Biol. December 15, 2011; 360 (2): 257-75.                        


pTransgenesis: a cross-species, modular transgenesis resource., Love NR., Development. December 1, 2011; 138 (24): 5451-8.              


Remobilization of Sleeping Beauty transposons in the germline of Xenopus tropicalis., Yergeau DA., Mob DNA. November 24, 2011; 2 15.              


Maternal topoisomerase II alpha, not topoisomerase II beta, enables embryonic development of zebrafish top2a-/- mutants., Sapetto-Rebow B., BMC Dev Biol. November 23, 2011; 11 71.                  


Quantitative analysis of ascorbic acid permeability of aquaporin 0 in the lens., Nakazawa Y., Biochem Biophys Res Commun. November 11, 2011; 415 (1): 125-30.


The development of the adult intestinal stem cells: Insights from studies on thyroid hormone-dependent amphibian metamorphosis., Shi YB., Cell Biosci. September 6, 2011; 1 (1): 30.        


In situ visualization of protein interactions in sensory neurons: glutamic acid-rich proteins (GARPs) play differential roles for photoreceptor outer segment scaffolding., Ritter LM., J Neurosci. August 3, 2011; 31 (31): 11231-43.              


FGF signaling is required for lens regeneration in Xenopus laevis., Fukui L., Biol Bull. August 1, 2011; 221 (1): 137-45.


Biphasic effect of linoleic acid on connexin 46 hemichannels., Retamal MA., Pflugers Arch. June 1, 2011; 461 (6): 635-43.


Different consequences of cataract-associated mutations at adjacent positions in the first extracellular boundary of connexin50., Tong JJ., Am J Physiol Cell Physiol. May 1, 2011; 300 (5): C1055-64.


Controlling gene loss of function in newts with emphasis on lens regeneration., Tsonis PA., Nat Protoc. May 1, 2011; 6 (5): 593-9.


The expression of αA- and βB1-crystallin during normal development and regeneration, and proteomic analysis for the regenerating lens in Xenopus laevis., Zhao Y., Mol Vis. March 23, 2011; 17 768-78.            


Novel strategy for subretinal delivery in Xenopus., Gonzalez-Fernandez F., Mol Vis. March 23, 2011; 17 2956-69.                      


The effect of the interaction between aquaporin 0 (AQP0) and the filensin tail region on AQP0 water permeability., Nakazawa Y., Mol Vis. March 23, 2011; 17 3191-9.            


Knockdown of SPARC leads to decreased cell-cell adhesion and lens cataracts during post-gastrula development in Xenopus laevis., Huynh MH., Dev Genes Evol. March 1, 2011; 220 (11-12): 315-27.


Properties of connexin 46 hemichannels in dissociated lens fiber cells., Ebihara L., Invest Ophthalmol Vis Sci. February 1, 2011; 52 (2): 882-9.


Transdifferentiation from cornea to lens in Xenopus laevis depends on BMP signalling and involves upregulation of Wnt signalling., Day RC., BMC Dev Biol. January 26, 2011; 11 54.                                                


Skeletal muscle sarcomeric SHG patterns photo-conversion by femtosecond infrared laser., Recher G., Biomed Opt Express. January 19, 2011; 2 (2): 374-84.          


Analysis of the expression of retinoic acid metabolising genes during Xenopus laevis organogenesis., Lynch J., Gene Expr Patterns. January 1, 2011; 11 (1-2): 112-7.                              


Unexpected diversity and photoperiod dependence of the zebrafish melanopsin system., Matos-Cruz V., PLoS One. January 1, 2011; 6 (9): e25111.          


Two distinct aquaporin 0s required for development and transparency of the zebrafish lens., Froger A., Invest Ophthalmol Vis Sci. December 1, 2010; 51 (12): 6582-92.


Molecular and cellular aspects of amphibian lens regeneration., Henry JJ., Prog Retin Eye Res. November 1, 2010; 29 (6): 543-55.


The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis., Perry KJ., Dev Dyn. November 1, 2010; 239 (11): 3024-37.                


Induction of vertebrate regeneration by a transient sodium current., Tseng AS., J Neurosci. September 29, 2010; 30 (39): 13192-200.                    


DAAM1 is a formin required for centrosome re-orientation during cell migration., Ang SF., PLoS One. September 7, 2010; 5 (9): .              


Oocyte-type linker histone B4 is required for transdifferentiation of somatic cells in vivo., Maki N., FASEB J. September 1, 2010; 24 (9): 3462-7.


Gabor-based fusion technique for Optical Coherence Microscopy., Rolland JP., Opt Express. February 15, 2010; 18 (4): 3632-42.


Secreted factor FAM3C (ILEI) is involved in retinal laminar formation., Katahira T., Biochem Biophys Res Commun. February 12, 2010; 392 (3): 301-6.          


Differential expression of the Brunol/CELF family genes during Xenopus laevis early development., Wu J., Int J Dev Biol. January 1, 2010; 54 (1): 209-14.          


Regulatory elements of Xenopus col2a1 drive cartilaginous gene expression in transgenic frogs., Kerney R., Int J Dev Biol. January 1, 2010; 54 (1): 141-50.      


RNA helicase Ddx39 is expressed in the developing central nervous system, limb, otic vesicle, branchial arches and facial mesenchyme of Xenopus laevis., Wilson JM., Gene Expr Patterns. January 1, 2010; 10 (1): 44-52.          


Making senses development of vertebrate cranial placodes., Schlosser G., Int Rev Cell Mol Biol. January 1, 2010; 283 129-234.


Xhairy2 functions in Xenopus lens development by regulating p27(xic1) expression., Murato Y., Dev Dyn. September 1, 2009; 238 (9): 2179-92.              


Gene expression profiles of lens regeneration and development in Xenopus laevis., Malloch EL., Dev Dyn. September 1, 2009; 238 (9): 2340-56.                                    

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 ???pagination.result.next???