Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6783) Expression Attributions Wiki
XB-ANAT-730

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Regulation in the neural plate of Xenopus laevis demonstrated by genetic markers., Szaro B., J Exp Zool. April 1, 1985; 234 (1): 117-29.


Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. III. The role of thyroxine., Hoskins SG., J Neurosci. April 1, 1985; 5 (4): 930-40.


Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. II. Ingrowth of optic nerve fibers and production of ipsilaterally projecting retinal ganglion cells., Hoskins SG., J Neurosci. April 1, 1985; 5 (4): 920-9.


Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. I. Retinal distribution of ipsilaterally projecting cells in normal and experimentally manipulated frogs., Hoskins SG., J Neurosci. April 1, 1985; 5 (4): 911-9.


Relation of retinomotor responses and contractile proteins in vertebrate retinas., Drenckhahn D., Eur J Cell Biol. May 1, 1985; 37 156-68.


Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis., Benavente R., Cell. May 1, 1985; 41 (1): 177-90.                      


Eye-specific segregation of optic afferents in mammals, fish, and frogs: the role of activity., Schmidt JT., Cell Mol Neurobiol. June 1, 1985; 5 (1-2): 5-34.


The role of visual experience in the formation of binocular projections in frogs., Udin SB., Cell Mol Neurobiol. June 1, 1985; 5 (1-2): 85-102.


Formation of retinotopic connections: selective stabilization by an activity-dependent mechanism., Schmidt JT., Cell Mol Neurobiol. June 1, 1985; 5 (1-2): 65-84.


Absence of keratan sulphate from skeletal tissues of mouse and rat., Venn G., Biochem J. June 1, 1985; 228 (2): 443-50.


A marker of early amacrine cell development in rat retina., Barnstable CJ., Dev Biol. June 1, 1985; 352 (2): 286-90.


Interaction of the transplanted olfactory placode with the optic stalk and the diencephalon in Xenopus laevis embryos., Magrassi L., Neuroscience. July 1, 1985; 15 (3): 903-21.


Messenger RNA from bovine retina induces kainate and glycine receptors in Xenopus oocytes., Parker I., Proc R Soc Lond B Biol Sci. July 22, 1985; 225 (1238): 99-106.


The efficacy of three non-mammalian test systems in the identification of chemical teratogens., Sabourin TD., J Appl Toxicol. August 1, 1985; 5 (4): 227-33.


A species difference between Rana and Xenopus in the occurrence of intertectal neuronal plasticity., Kennard C., Neurosci Lett. August 5, 1985; 58 (3): 365-70.


LDHk in the retina of diverse vertebrate species: a possible link to the Warburg effect., Saavedra RA., Exp Eye Res. September 1, 1985; 41 (3): 365-70.


The effects of the fibre environment on the paths taken by regenerating optic nerve fibres in Xenopus., Taylor JS., J Embryol Exp Morphol. October 1, 1985; 89 383-401.


Cell distributions in the retinal ganglion cell layer of adult Leptodactylid frogs after premetamorphic eye rotation., Dunlop SA., J Embryol Exp Morphol. October 1, 1985; 89 159-73.


Vesicular transport of newly synthesized opsin from the Golgi apparatus toward the rod outer segment. Ultrastructural immunocytochemical and autoradiographic evidence in Xenopus retinas., Papermaster DS., Invest Ophthalmol Vis Sci. October 1, 1985; 26 (10): 1386-404.


Determination of tissue-type plasminogen-activator mRNA in human and non-human cell lines by dot-blot hybridization., Opdenakker G., Biochem J. October 15, 1985; 231 (2): 309-13.


Studies on the endogenous galactose-binding lectin during early development of the embryo of Xenopus laevis., Harris H., J Cell Sci. November 1, 1985; 79 105-17.


Factors guiding regenerating retinotectal fibres in the frog Xenopus laevis., Fawcett JW., J Embryol Exp Morphol. December 1, 1985; 90 233-50.


Map formation in the developing Xenopus retinotectal system: an examination of ganglion cell terminal arborizations., Sakaguchi DS., J Neurosci. December 1, 1985; 5 (12): 3228-45.


[Distribution of differentiation potentials and the conditions for their realization in the amphibian neuroectoderm]., Golubeva ON., Ontogenez. January 1, 1986; 17 (6): 648-54.


Microenvironments of photoreceptor and interphotoreceptor matrix glycoconjugates., Wood JG., Histochem J. January 1, 1986; 18 (11-12): 605-12.


Cell movements and novel growth patterns during early healing in regenerating embryonic Xenopus retina., Ide CF., Prog Clin Biol Res. January 1, 1986; 217B 133-6.


Naturally occurring and induced ganglion cell death. A retinal whole-mount autoradiographic study in Xenopus., Jenkins S., Anat Embryol (Berl). January 1, 1986; 174 (1): 59-66.


A cation channel in frog lens epithelia responsive to pressure and calcium., Cooper KE., J Membr Biol. January 1, 1986; 93 (3): 259-69.


Involvement of calcium in the regulation of serotonin N-acetyltransferase in retina., Iuvone PM., J Neurochem. January 1, 1986; 46 (1): 82-8.


Cyclic AMP stimulates serotonin N-acetyltransferase activity in Xenopus retina in vitro., Iuvone PM., J Neurochem. January 1, 1986; 46 (1): 33-9.


Evidence for a D2 dopamine receptor in frog retina that decreases cyclic AMP accumulation and serotonin N-acetyltransferase activity., Iuvone PM., Life Sci. January 27, 1986; 38 (4): 331-42.


Localization of specific mRNA sequences in Xenopus laevis embryos by in situ hybridization., Dworkin-Rastl E., J Embryol Exp Morphol. February 1, 1986; 91 153-68.            


Visual deprivation and the maturation of the retinotectal projection in Xenopus laevis., Keating MJ., J Embryol Exp Morphol. February 1, 1986; 91 101-15.


Ocular migration and the metamorphic and postmetamorphic maturation of the retinotectal system in Xenopus laevis: an autoradiographic and morphometric study., Grant S., J Embryol Exp Morphol. March 1, 1986; 92 43-69.


Homing behaviour of axons in the embryonic vertebrate brain., Harris WA., Nature. March 20, 1986; 320 (6059): 266-9.


Dopamine receptor-mediated inhibition of serotonin N-acetyltransferase activity in retina., Iuvone PM., Dev Biol. March 26, 1986; 369 (1-2): 168-76.


Embryonic and regenerating Xenopus retinal fibers are intrinsically different., Grant P., Dev Biol. April 1, 1986; 114 (2): 475-91.


Pattern regulation in the eyebud of Xenopus studied with a vital-dye fiber-tracing technique., O'Rourke NA., Dev Biol. April 1, 1986; 114 (2): 277-88.


Dynamic aspects of retinotectal map formation revealed by a vital-dye fiber-tracing technique., O'Rourke NA., Dev Biol. April 1, 1986; 114 (2): 265-76.


A comparative study of the innervation of the choroid plexus in amphibia., Ando K., Experientia. April 15, 1986; 42 (4): 394-8.


Control of the development of the ipsilateral retinothalamic projection in Xenopus laevis by thyroxine: results and speculation., Hoskins SG., J Neurobiol. May 1, 1986; 17 (3): 203-29.


Electron microscopic immunocytochemistry of interstitial retinol-binding protein in vertebrate retinas., Schneider BG., Invest Ophthalmol Vis Sci. May 1, 1986; 27 (5): 679-88.


CNPase activity in the vertebrate retina, retinal pigmented epithelium, and choroid., Heath AR., J Exp Zool. May 1, 1986; 238 (2): 183-91.


The discontinuous visual projections on the Xenopus optic tectum following regeneration after unilateral nerve section., Willshaw DJ., J Embryol Exp Morphol. June 1, 1986; 94 121-37.


A physiological measure of shifting connections in the Rana pipiens retinotectal system., Fraser SE., J Embryol Exp Morphol. June 1, 1986; 94 149-61.


The pituitary adrenocorticotropes originate from neural ridge tissue in Xenopus laevis., Eagleson GW., J Embryol Exp Morphol. June 1, 1986; 95 1-14.              


Melatonin: parallels in pineal gland and retina., Wiechmann AF., Exp Eye Res. June 1, 1986; 42 (6): 507-27.


Normal maturation involves systematic changes in binocular visual connections in Xenopus laevis., Grant S., Nature. July 17, 1986; 322 (6076): 258-61.


Induction of neural cell adhesion molecule (NCAM) in Xenopus embryos., Jacobson M., Dev Biol. August 1, 1986; 116 (2): 524-31.            


Optic fibers follow aberrant pathways from rotated eyes in Xenopus laevis., Grant P., J Comp Neurol. August 15, 1986; 250 (3): 364-76.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ???pagination.result.next???