Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (404) Expression Attributions Wiki
XB-ANAT-3987

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Molecular analysis and developmental expression of the focal adhesion kinase pp125FAK in Xenopus laevis., Hens MD., Dev Biol. August 1, 1995; 170 (2): 274-88.                    


Molecular characterization of a reduced glutathione transporter in the lens., Kannan R., Invest Ophthalmol Vis Sci. August 1, 1995; 36 (9): 1785-92.


[Lens induction in the gastrula ectoderm under the effect of adult frog lens epithelium]., Lopashov GV., Dokl Akad Nauk. July 1, 1995; 343 (3): 406-8.


Distinct behavior of connexin56 and connexin46 gap junctional channels can be predicted from the behavior of their hemi-gap-junctional channels., Ebihara L., Biophys J. May 1, 1995; 68 (5): 1796-803.


Water channel properties of major intrinsic protein of lens., Mulders SM., J Biol Chem. April 14, 1995; 270 (15): 9010-16.


Changes in connexin expression and distribution during chick lens development., Jiang JX., Dev Biol. April 1, 1995; 168 (2): 649-61.


Induction of the prospective neural crest of Xenopus., Mayor R., Development. March 1, 1995; 121 (3): 767-77.                  


The inhibition of cell proliferation by mitomycin C does not prevent transdifferentiation of outer cornea into lens in larval Xenopus laevis., Filoni S., Differentiation. February 1, 1995; 58 (3): 195-203.


Evidence for the direct involvement of lamins in the assembly of a replication competent nucleus., Jenkins H., Acta Biochim Pol. January 1, 1995; 42 (2): 133-43.


Bovine connexin44, a lens gap junction protein: molecular cloning, immunologic characterization, and functional expression., Gupta VK., Invest Ophthalmol Vis Sci. September 1, 1994; 35 (10): 3747-58.


Selective interactions among the multiple connexin proteins expressed in the vertebrate lens: the second extracellular domain is a determinant of compatibility between connexins., White TW., J Cell Biol. May 1, 1994; 125 (4): 879-92.


Molecular cloning of cDNA for rat ovarian 20 alpha-hydroxysteroid dehydrogenase (HSD1)., Miura R., Biochem J. April 15, 1994; 299 ( Pt 2) 561-7.


Overexpression of a cellular retinoic acid binding protein (xCRABP) causes anteroposterior defects in developing Xenopus embryos., Dekker EJ., Development. April 1, 1994; 120 (4): 973-85.                


A 28 kDa sarcolemmal antigen in kidney principal cell basolateral membranes: relationship to orthogonal arrays and MIP26., Verbavatz JM., J Cell Sci. April 1, 1994; 107 ( Pt 4) 1083-94.


Molecular cloning and functional characterization of chick lens fiber connexin 45.6., Jiang JX., Mol Biol Cell. March 1, 1994; 5 (3): 363-73.


Xenopus gamma-crystallin gene expression: evidence that the gamma-crystallin gene family is transcribed in lens and nonlens tissues., Smolich BD., Mol Cell Biol. February 1, 1994; 14 (2): 1355-63.


The nuclear pore complex: three-dimensional surface structure revealed by field emission, in-lens scanning electron microscopy, with underlying structure uncovered by proteolysis., Goldberg MW., J Cell Sci. September 1, 1993; 106 ( Pt 1) 261-74.


Properties of a nonjunctional current expressed from a rat connexin46 cDNA in Xenopus oocytes., Ebihara L., J Gen Physiol. July 1, 1993; 102 (1): 59-74.


A Xenopus homebox gene defines dorsal-ventral domains in the developing brain., Saha MS., Development. May 1, 1993; 118 (1): 193-202.              


[Recent progress in molecular biology of inherited tubular transport abnormalities]., Indo Y., Nihon Rinsho. December 1, 1992; 50 (12): 3086-92.


High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores., Goldberg MW, Goldberg MW., J Cell Biol. December 1, 1992; 119 (6): 1429-40.


Levels of reduced pyridine nucleotides and lens photodamage., Rao CM., Photochem Photobiol. October 1, 1992; 56 (4): 523-8.


Embryonic lens induction: shedding light on vertebrate tissue determination., Grainger RM., Trends Genet. October 1, 1992; 8 (10): 349-55.


The cooperative interaction between two motifs of an enhancer element of the chicken alpha A-crystallin gene, alpha CE1 and alpha CE2, confers lens-specific expression., Matsuo I., Nucleic Acids Res. July 25, 1992; 20 (14): 3701-12.


Localization of ras proto-oncogene expression during development in Xenopus laevis., Andéol Y., Mol Reprod Dev. July 1, 1992; 32 (3): 187-95.


Mouse Cx50, a functional member of the connexin family of gap junction proteins, is the lens fiber protein MP70., White TW., Mol Biol Cell. July 1, 1992; 3 (7): 711-20.


The use of field emission in-lens scanning electron microscopy to study the steps of assembly of the nuclear envelope in vitro., Goldberg MW., J Struct Biol. January 1, 1992; 108 (3): 257-68.


Recent progress on the mechanisms of embryonic lens formation., Grainger RM., Eye (Lond). January 1, 1992; 6 ( Pt 2) 117-22.


Assembly and structure of calcium-induced thick vimentin filaments., Hofmann I., Eur J Cell Biol. December 1, 1991; 56 (2): 328-41.


Lens formation from the cornea following implantation into hindlimbs of larval Xenopus laevis: the influence of limb innervation and extent of differentiation., Filoni S., J Exp Zool. November 1, 1991; 260 (2): 220-8.


Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes., Paul DL., J Cell Biol. November 1, 1991; 115 (4): 1077-89.


Homeogenetic neural induction in Xenopus., Servetnick M., Dev Biol. September 1, 1991; 147 (1): 73-82.      


[Immunolocalization of fodrin in the retina of vertebrates], Rungger E., Klin Monbl Augenheilkd. May 1, 1991; 198 (5): 408-10.


Changes in neural and lens competence in Xenopus ectoderm: evidence for an autonomous developmental timer., Servetnick M., Development. May 1, 1991; 112 (1): 177-88.                  


Transgenic Xenopus laevis tadpoles: a transient in vivo model system for the manipulation of lens function and lens development., Brakenhoff RH., Nucleic Acids Res. March 25, 1991; 19 (6): 1279-84.


Differential expression of creatine kinase isozymes during development of Xenopus laevis: an unusual heterodimeric isozyme appears at metamorphosis., Robert J., Differentiation. February 1, 1991; 46 (1): 23-34.            


Regenerative capacity of retinal cells and the maintenance of their differentiation., Lopashov GV., Ciba Found Symp. January 1, 1991; 160 209-17; discussion 217-8.


Microinjection of fluorescent tracers to study neural cell lineages., Wetts R., Development. January 1, 1991; Suppl 2 1-8.    


Immune responses of intact and embryonically enucleated frogs to self-lens antigens., Rollins-Smith LA., J Immunol. November 15, 1990; 145 (10): 3262-7.


Isolation and characterization of a distantly related member of the beta-gamma crystallin super gene family from Xenopus., Shastry BS., Biochem Biophys Res Commun. September 28, 1990; 171 (3): 1333-7.


The structure and expression of a distantly related member of the beta-gamma crystallin super gene family from Xenopus., Shastry BS., Biochem Biophys Res Commun. September 28, 1990; 171 (3): 1338-43.


Early tissue interactions leading to embryonic lens formation in Xenopus laevis., Henry JJ., Dev Biol. September 1, 1990; 141 (1): 149-63.


Thyroxine-dependent modulations of the expression of the neural cell adhesion molecule N-CAM during Xenopus laevis metamorphosis., Levi G., Development. April 1, 1990; 108 (4): 681-92.                


Embryonic lens induction: more than meets the optic vesicle., Saha MS., Cell Differ Dev. December 1, 1989; 28 (3): 153-71.


Immunological studies on gamma crystallins from Xenopus: localization, tissue specificity and developmental expression of proteins., Shastry BS., Exp Eye Res. September 1, 1989; 49 (3): 361-9.      


Formation of gap junctions by expression of connexins in Xenopus oocyte pairs., Swenson KI., Cell. April 7, 1989; 57 (1): 145-55.


Fibronectin distribution during cell type conversion in newt lens regeneration., Elgert KL., Anat Embryol (Berl). January 1, 1989; 180 (2): 131-42.


Localization of c-myc expression during oogenesis and embryonic development in Xenopus laevis., Hourdry J., Development. December 1, 1988; 104 (4): 631-41.          


Transdifferentiation of ocular tissues in larval Xenopus laevis., Bosco L., Differentiation. November 1, 1988; 39 (1): 4-15.


Crystallins during Xenopus laevis free lens formation., Kumar Brahma S., Rouxs Arch Dev Biol. May 1, 1988; 197 (3): 190-192.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 ???pagination.result.next???