Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (704) Expression Attributions Wiki
XB-ANAT-772

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Removal of eyes in early larval stages alters the response of the clawed toad, Xenopus laevis, to surface waves., Claas B., Physiol Behav. September 1, 1994; 56 (3): 423-8.


Differential perturbations in the morphogenesis of anterior structures induced by overexpression of truncated XB- and N-cadherins in Xenopus embryos., Dufour S., J Cell Biol. October 1, 1994; 127 (2): 521-35.   


Ultrastructure and GABA immunoreactivity in layers 8 and 9 of the optic tectum of Xenopus laevis., Rybicka KK., Eur J Neurosci. October 1, 1994; 6 (10): 1567-82.   


Overexpression of XMyoD or XMyf5 in Xenopus embryos induces the formation of enlarged myotomes through recruitment of cells of nonsomitic lineage., Ludolph DC., Dev Biol. November 1, 1994; 166 (1): 18-33.   


Experience-dependent mechanism of binocular map plasticity in Xenopus: incongruent connections are masked by retinal input., Brickley SG., Neurosci Lett. November 21, 1994; 182 (1): 13-6.


Differential intertectal delay between Rana pipiens and Xenopus laevis: implications for species-specific visual plasticity., Scherer WJ., Vis Neurosci. January 1, 1995; 12 (5): 1007-11.


CNS myelin and oligodendrocytes of the Xenopus spinal cord--but not optic nerve--are nonpermissive for axon growth., Lang DM., J Neurosci. January 1, 1995; 15 (1 Pt 1): 99-109.   


Brain regions and encephalization in anurans: adaptation or stability?, Taylor GM., Brain Behav Evol. January 1, 1995; 45 (2): 96-109.


XIdx, a dominant negative regulator of bHLH function in early Xenopus embryos., Wilson R., Mech Dev. February 1, 1995; 49 (3): 211-22.   


Frog prohormone convertase PC2 mRNA has a mammalian-like expression pattern in the central nervous system and is colocalized with a subset of thyrotropin-releasing hormone-expressing neurons., Pu LP., J Comp Neurol. March 27, 1995; 354 (1): 71-86.


Infection of frog neurons with vaccinia virus permits in vivo expression of foreign proteins., Wu GY., Neuron. April 1, 1995; 14 (4): 681-4.


Developmental changes in melanin-concentrating hormone in Rana temporaria., Francis K., Gen Comp Endocrinol. May 1, 1995; 98 (2): 157-65.   


Immunochemical localization of calcium/calmodulin-dependent protein kinase I., Picciotto MR., Synapse. May 1, 1995; 20 (1): 75-84.


Plexin: a novel neuronal cell surface molecule that mediates cell adhesion via a homophilic binding mechanism in the presence of calcium ions., Ohta K., Neuron. June 1, 1995; 14 (6): 1189-99.   


The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis., Zhao Y., J Neurosci. June 1, 1995; 15 (6): 4629-40.   


Expression of a cell adhesion molecule, neuropilin, in the developing chick nervous system., Takagi S., Dev Biol. July 1, 1995; 170 (1): 207-22.


Absence of topography in precociously innervated tecta., Chien CB., Development. August 1, 1995; 121 (8): 2621-31.


Molecular analysis and developmental expression of the focal adhesion kinase pp125FAK in Xenopus laevis., Hens MD., Dev Biol. August 1, 1995; 170 (2): 274-88.   


Presynaptic differentiation induced in cultured neurons by local application of basic fibroblast growth factor., Dai Z., J Neurosci. August 1, 1995; 15 (8): 5466-75.


FGF signaling and target recognition in the developing Xenopus visual system., McFarlane S., Neuron. November 1, 1995; 15 (5): 1017-28.


Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo., Cohen-Cory S., Nature. November 9, 1995; 378 (6553): 192-6.


Differential effects of retinoic acid and a retinoid antagonist on the spatial distribution of the homeoprotein Hoxb-7 in vertebrate embryos., López SL., Dev Dyn. December 1, 1995; 204 (4): 457-71.   


Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain., Xu Q., Development. December 1, 1995; 121 (12): 4005-16.   


Early expression of a novel radial glia antigen in the chick embryo., Prada FA., Glia. December 1, 1995; 15 (4): 389-400.


Anuran dorsal column nucleus: organization, immunohistochemical characterization, and fiber connections in Rana perezi and Xenopus laevis., Muñoz A., J Comp Neurol. December 11, 1995; 363 (2): 197-220.


Larval development of tectal efferents and afferents in Xenopus laevis (Amphibia Anura)., Chahoud BH., J Hirnforsch. January 1, 1996; 37 (4): 519-35.


Polysialylated neural cell adhesion molecule and plasticity of ipsilateral connections in Xenopus tectum., Williams DK., Neuroscience. January 1, 1996; 70 (1): 277-85.


Developmental expression of a neuron-specific beta-tubulin in frog (Xenopus laevis): a marker for growing axons during the embryonic period., Moody SA., J Comp Neurol. January 8, 1996; 364 (2): 219-30.   


Factors responsible for the establishment of the body plan in the amphibian embryo., Grunz H., Int J Dev Biol. February 1, 1996; 40 (1): 279-89.   


The LIM homeodomain protein Lim-1 is widely expressed in neural, neural crest and mesoderm derivatives in vertebrate development., Karavanov AA., Int J Dev Biol. April 1, 1996; 40 (2): 453-61.   


Inhibition of protein tyrosine kinases impairs axon extension in the embryonic optic tract., Worley T., J Neurosci. April 1, 1996; 16 (7): 2294-306.


Immunohistochemical investigation of gamma-aminobutyric acid ontogeny and transient expression in the central nervous system of Xenopus laevis tadpoles., Barale E., J Comp Neurol. April 29, 1996; 368 (2): 285-94.


Nitric oxide synthase in the brain of a urodele amphibian (Pleurodeles waltl) and its relation to catecholaminergic neuronal structures., González A., Dev Biol. July 15, 1996; 727 (1-2): 49-64.


Inhibition of FGF receptor activity in retinal ganglion cell axons causes errors in target recognition., McFarlane S., Neuron. August 1, 1996; 17 (2): 245-54.


Integrin alpha 6 expression is required for early nervous system development in Xenopus laevis., Lallier TE., Development. August 1, 1996; 122 (8): 2539-54.   


A novel transmembrane protein with epidermal growth factor and follistatin domains expressed in the hypothalamo-hypophysial axis of Xenopus laevis., Eib DW., J Neurochem. September 1, 1996; 67 (3): 1047-55.


Patterns of distal-less gene expression and inductive interactions in the head of the direct developing frog Eleutherodactylus coqui., Fang H., Dev Biol. October 10, 1996; 179 (1): 160-72.   


The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development., Cohen-Cory S., Dev Biol. October 10, 1996; 179 (1): 102-15.   


Localization of nitric oxide synthase in the brain of the frog, Xenopus laevis., Brüning G., Dev Biol. November 25, 1996; 741 (1-2): 331-43.   


Perturbation of the developing Xenopus retinotectal projection following injections of antibodies against beta1 integrin receptors and N-cadherin., Stone KE., Dev Biol. November 25, 1996; 180 (1): 297-310.


Insertional mutagenesis in zebrafish identifies two novel genes, pescadillo and dead eye, essential for embryonic development., Allende ML., Genes Dev. December 15, 1996; 10 (24): 3141-55.


Xefiltin, a new low molecular weight neuronal intermediate filament protein of Xenopus laevis, shares sequence features with goldfish gefiltin and mammalian alpha-internexin and differs in expression from XNIF and NF-L., Zhao Y., J Comp Neurol. January 20, 1997; 377 (3): 351-64.   


Spinal ascending pathways in amphibians: cells of origin and main targets., Muñoz A., J Comp Neurol. February 10, 1997; 378 (2): 205-28.


Basal ganglia organization in amphibians: efferent connections of the striatum and the nucleus accumbens., Marín O., J Comp Neurol. March 31, 1997; 380 (1): 23-50.


Xenopus Brn-3.0, a POU-domain gene expressed in the developing retina and tectum. Not regulated by innervation., Hirsch N., Invest Ophthalmol Vis Sci. April 1, 1997; 38 (5): 960-9.


The contribution of protein kinases to plastic events in the superior colliculus., McCrossan D., Prog Neuropsychopharmacol Biol Psychiatry. April 1, 1997; 21 (3): 487-505.


Essential role of heparan sulfates in axon navigation and targeting in the developing visual system., Walz A., Development. June 1, 1997; 124 (12): 2421-30.   


Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians., Marín O., J Comp Neurol. June 16, 1997; 382 (4): 499-534.   


Cloning and developmental expression of 5-HT1A receptor gene in Xenopus laevis., Marracci S., Brain Res Mol Brain Res. July 1, 1997; 47 (1-2): 67-77.   


A major glycoprotein of Xenopus egg vitelline envelope, gp41, is a frog homolog of mammalian ZP3., Kubo H., Dev Growth Differ. August 1, 1997; 39 (4): 405-17.   

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???