Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (209) Expression Attributions Wiki
XB-ANAT-769

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Local and target-derived brain-derived neurotrophic factor exert opposing effects on the dendritic arborization of retinal ganglion cells in vivo., Lom B., J Neurosci. September 1, 2002; 22 (17): 7639-49.


Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands., Mann F., Neuron. August 1, 2002; 35 (3): 461-73.  


GABA and development of the Xenopus optic projection., Ferguson SC., J Neurobiol. June 15, 2002; 51 (4): 272-84.              


Co-ordinating retinal histogenesis: early cell cycle exit enhances early cell fate determination in the Xenopus retina., Ohnuma S., Development. May 1, 2002; 129 (10): 2435-46.            


The secreted glycoprotein Noelin-1 promotes neurogenesis in Xenopus., Moreno TA., Dev Biol. December 15, 2001; 240 (2): 340-60.                  


Receptor protein tyrosine phosphatases regulate retinal ganglion cell axon outgrowth in the developing Xenopus visual system., Johnson KG., J Neurobiol. November 5, 2001; 49 (2): 99-117.


Notch signaling can inhibit Xath5 function in the neural plate and developing retina., Schneider ML., Mol Cell Neurosci. November 1, 2001; 18 (5): 458-72.


Semaphorin 3A elicits stage-dependent collapse, turning, and branching in Xenopus retinal growth cones., Campbell DS., J Neurosci. November 1, 2001; 21 (21): 8538-47.              


Developmental regulation of CPG15 expression in Xenopus., Nedivi E., J Comp Neurol. July 9, 2001; 435 (4): 464-73.                    


The bHLH factors Xath5 and XNeuroD can upregulate the expression of XBrn3d, a POU-homeodomain transcription factor., Hutcheson DA., Dev Biol. April 15, 2001; 232 (2): 327-38.          


The Ath5 proneural genes function upstream of Brn3 POU domain transcription factor genes to promote retinal ganglion cell development., Liu W., Proc Natl Acad Sci U S A. February 13, 2001; 98 (4): 1649-54.


Pax genes in development and maturation of the vertebrate visual system: implications for optic nerve regeneration., Ziman MR., Histol Histopathol. January 1, 2001; 16 (1): 239-49.


Nitric oxide modulates retinal ganglion cell axon arbor remodeling in vivo., Cogen J., J Neurobiol. November 5, 2000; 45 (2): 120-33.              


Overexpression of FGF-2 alters cell fate specification in the developing retina of Xenopus laevis., Patel A., Dev Biol. June 1, 2000; 222 (1): 170-80.          


A role for voltage-gated potassium channels in the outgrowth of retinal axons in the developing visual system., McFarlane S., J Neurosci. February 1, 2000; 20 (3): 1020-9.                  


Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo., Lom B., J Neurosci. November 15, 1999; 19 (22): 9928-38.


Nitric oxide in the retinotectal system: a signal but not a retrograde messenger during map refinement and segregation., Rentería RC., J Neurosci. August 15, 1999; 19 (16): 7066-76.          


Light-induced calcium influx into retinal axons is regulated by presynaptic nicotinic acetylcholine receptor activity in vivo., Edwards JA., J Neurophysiol. February 1, 1999; 81 (2): 895-907.


Fibroblast growth factor receptor signaling in Xenopus retinal axon extension., Lom B., J Neurobiol. December 1, 1998; 37 (4): 633-41.


Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis., Brown NL., Development. December 1, 1998; 125 (23): 4821-33.    


The genetic sequence of retinal development in the ciliary margin of the Xenopus eye., Perron M., Dev Biol. July 15, 1998; 199 (2): 185-200.                    


Synchronizing retinal activity in both eyes disrupts binocular map development in the optic tectum., Brickley SG., J Neurosci. February 15, 1998; 18 (4): 1491-504.


Turning of retinal growth cones in a netrin-1 gradient mediated by the netrin receptor DCC., de la Torre JR., Neuron. December 1, 1997; 19 (6): 1211-24.


Myosin functions in Xenopus retinal ganglion cell growth cone motility in vivo., Ruchhoeft ML., J Neurobiol. June 5, 1997; 32 (6): 567-78.


Essential role of heparan sulfates in axon navigation and targeting in the developing visual system., Walz A., Development. June 1, 1997; 124 (12): 2421-30.        


Xenopus Brn-3.0, a POU-domain gene expressed in the developing retina and tectum. Not regulated by innervation., Hirsch N., Invest Ophthalmol Vis Sci. April 1, 1997; 38 (5): 960-9.


Xefiltin, a new low molecular weight neuronal intermediate filament protein of Xenopus laevis, shares sequence features with goldfish gefiltin and mammalian alpha-internexin and differs in expression from XNIF and NF-L., Zhao Y., J Comp Neurol. January 20, 1997; 377 (3): 351-64.            


The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development., Cohen-Cory S., Dev Biol. October 10, 1996; 179 (1): 102-15.              


Inhibition of FGF receptor activity in retinal ganglion cell axons causes errors in target recognition., McFarlane S., Neuron. August 1, 1996; 17 (2): 245-54.


Expression and herbimycin A-sensitive localization of pp125FAK in retinal growth cones., Worley TL., Neuroreport. April 26, 1996; 7 (6): 1133-7.


Exogenous nitric oxide causes collapse of retinal ganglion cell axonal growth cones in vitro., Rentería RC., J Neurobiol. April 1, 1996; 29 (4): 415-28.


Inhibition of protein tyrosine kinases impairs axon extension in the embryonic optic tract., Worley T., J Neurosci. April 1, 1996; 16 (7): 2294-306.


Chimeric integrins expressed in retinal ganglion cells impair process outgrowth in vivo., Lilienbaum A., Mol Cell Neurosci. April 1, 1995; 6 (2): 139-52.


CNS myelin and oligodendrocytes of the Xenopus spinal cord--but not optic nerve--are nonpermissive for axon growth., Lang DM., J Neurosci. January 1, 1995; 15 (1 Pt 1): 99-109.            


The return of phosphorylated and nonphosphorylated epitopes of neurofilament proteins to the regenerating optic nerve of Xenopus laevis., Zhao Y., J Comp Neurol. May 1, 1994; 343 (1): 158-72.


BDNF in the development of the visual system of Xenopus., Cohen-Cory S., Neuron. April 1, 1994; 12 (4): 747-61.


A discrete group of melanin containing cells are coincident with a major reorganization of retinal ganglion cell axons in the optic nerve of Xenopus., Taylor JS., J Neurocytol. November 1, 1993; 22 (11): 1007-16.


Function and spatial distribution in developing chick retina of the laminin receptor alpha 6 beta 1 and its isoforms., de Curtis I., Development. June 1, 1993; 118 (2): 377-88.


Ipsilaterally projecting retinal ganglion cells in Xenopus laevis: an HRP study., Schütte M., J Comp Neurol. May 22, 1993; 331 (4): 482-94.


Identification and developmental expression of a novel low molecular weight neuronal intermediate filament protein expressed in Xenopus laevis., Charnas LR., J Neurosci. August 1, 1992; 12 (8): 3010-24.                      


Spatio-temporal patterns of retinal ganglion cell death during Xenopus development., Gaze RM., J Comp Neurol. January 15, 1992; 315 (3): 264-74.


The early development of the frog retinotectal projection., Taylor JS., Development. January 1, 1991; Suppl 2 95-104.            


Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: an in vivo confocal microscopic study., O'Rourke NA., Neuron. August 1, 1990; 5 (2): 159-71.


The expression of phosphorylated and non-phosphorylated forms of MAP5 in the amphibian CNS., Viereck C., Dev Biol. February 5, 1990; 508 (2): 257-64.              


The directed growth of retinal axons towards surgically transposed tecta in Xenopus; an examination of homing behaviour by retinal ganglion cell axons., Taylor JS., Development. January 1, 1990; 108 (1): 147-58.


A single-cell analysis of early retinal ganglion cell differentiation in Xenopus: from soma to axon tip., Holt CE., J Neurosci. September 1, 1989; 9 (9): 3123-45.                                


Growth cone interactions with a glial cell line from embryonic Xenopus retina., Sakaguchi DS., Dev Biol. July 1, 1989; 134 (1): 158-74.                    


Gradual appearance of a regulated retinotectal projection pattern in Xenopus laevis., O'Rourke NA., Dev Biol. March 1, 1989; 132 (1): 251-65.


Is the capacity for optic nerve regeneration related to continued retinal ganglion cell production in the frog?, Taylor JS., Eur J Neurosci. January 1, 1989; 1 (6): 626-38.


Retinal ganglion cell death induced by unilateral tectal ablation in Xenopus., Straznicky C., Vis Neurosci. January 1, 1989; 2 (4): 339-47.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 ???pagination.result.next???