Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (198) Expression Attributions Wiki
XB-ANAT-1594

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4

Sort Newest To Oldest Sort Oldest To Newest

The Ath5 proneural genes function upstream of Brn3 POU domain transcription factor genes to promote retinal ganglion cell development., Liu W., Proc Natl Acad Sci U S A. February 13, 2001; 98 (4): 1649-54.


Pax genes in development and maturation of the vertebrate visual system: implications for optic nerve regeneration., Ziman MR., Histol Histopathol. January 1, 2001; 16 (1): 239-49.


Nitric oxide modulates retinal ganglion cell axon arbor remodeling in vivo., Cogen J., J Neurobiol. November 5, 2000; 45 (2): 120-33.   


Overexpression of FGF-2 alters cell fate specification in the developing retina of Xenopus laevis., Patel A., Dev Biol. June 1, 2000; 222 (1): 170-80.   


A role for voltage-gated potassium channels in the outgrowth of retinal axons in the developing visual system., McFarlane S., J Neurosci. February 1, 2000; 20 (3): 1020-9.   


Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo., Lom B., J Neurosci. November 15, 1999; 19 (22): 9928-38.


Nitric oxide in the retinotectal system: a signal but not a retrograde messenger during map refinement and segregation., Rentería RC., J Neurosci. August 15, 1999; 19 (16): 7066-76.   


Light-induced calcium influx into retinal axons is regulated by presynaptic nicotinic acetylcholine receptor activity in vivo., Edwards JA., J Neurophysiol. February 1, 1999; 81 (2): 895-907.


Fibroblast growth factor receptor signaling in Xenopus retinal axon extension., Lom B., J Neurobiol. December 1, 1998; 37 (4): 633-41.


Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis., Brown NL., Development. December 1, 1998; 125 (23): 4821-33.   


Synchronizing retinal activity in both eyes disrupts binocular map development in the optic tectum., Brickley SG., J Neurosci. February 15, 1998; 18 (4): 1491-504.


Turning of retinal growth cones in a netrin-1 gradient mediated by the netrin receptor DCC., de la Torre JR., Neuron. December 1, 1997; 19 (6): 1211-24.


Myosin functions in Xenopus retinal ganglion cell growth cone motility in vivo., Ruchhoeft ML., J Neurobiol. June 5, 1997; 32 (6): 567-78.


Essential role of heparan sulfates in axon navigation and targeting in the developing visual system., Walz A., Development. June 1, 1997; 124 (12): 2421-30.   


Xenopus Brn-3.0, a POU-domain gene expressed in the developing retina and tectum. Not regulated by innervation., Hirsch N., Invest Ophthalmol Vis Sci. April 1, 1997; 38 (5): 960-9.


Xefiltin, a new low molecular weight neuronal intermediate filament protein of Xenopus laevis, shares sequence features with goldfish gefiltin and mammalian alpha-internexin and differs in expression from XNIF and NF-L., Zhao Y., J Comp Neurol. January 20, 1997; 377 (3): 351-64.   


The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development., Cohen-Cory S., Dev Biol. October 10, 1996; 179 (1): 102-15.   


Inhibition of FGF receptor activity in retinal ganglion cell axons causes errors in target recognition., McFarlane S., Neuron. August 1, 1996; 17 (2): 245-54.


Expression and herbimycin A-sensitive localization of pp125FAK in retinal growth cones., Worley TL., Neuroreport. April 26, 1996; 7 (6): 1133-7.


Exogenous nitric oxide causes collapse of retinal ganglion cell axonal growth cones in vitro., Rentería RC., J Neurobiol. April 1, 1996; 29 (4): 415-28.


Inhibition of protein tyrosine kinases impairs axon extension in the embryonic optic tract., Worley T., J Neurosci. April 1, 1996; 16 (7): 2294-306.


Chimeric integrins expressed in retinal ganglion cells impair process outgrowth in vivo., Lilienbaum A., Mol Cell Neurosci. April 1, 1995; 6 (2): 139-52.


CNS myelin and oligodendrocytes of the Xenopus spinal cord--but not optic nerve--are nonpermissive for axon growth., Lang DM., J Neurosci. January 1, 1995; 15 (1 Pt 1): 99-109.   


The return of phosphorylated and nonphosphorylated epitopes of neurofilament proteins to the regenerating optic nerve of Xenopus laevis., Zhao Y., J Comp Neurol. May 1, 1994; 343 (1): 158-72.


BDNF in the development of the visual system of Xenopus., Cohen-Cory S., Neuron. April 1, 1994; 12 (4): 747-61.


A discrete group of melanin containing cells are coincident with a major reorganization of retinal ganglion cell axons in the optic nerve of Xenopus., Taylor JS., J Neurocytol. November 1, 1993; 22 (11): 1007-16.


Function and spatial distribution in developing chick retina of the laminin receptor alpha 6 beta 1 and its isoforms., de Curtis I., Development. June 1, 1993; 118 (2): 377-88.


Ipsilaterally projecting retinal ganglion cells in Xenopus laevis: an HRP study., Schütte M., J Comp Neurol. May 22, 1993; 331 (4): 482-94.


Identification and developmental expression of a novel low molecular weight neuronal intermediate filament protein expressed in Xenopus laevis., Charnas LR., J Neurosci. August 1, 1992; 12 (8): 3010-24.   


Spatio-temporal patterns of retinal ganglion cell death during Xenopus development., Gaze RM., J Comp Neurol. January 15, 1992; 315 (3): 264-74.


The early development of the frog retinotectal projection., Taylor JS., Development. January 1, 1991; Suppl 2 95-104.   


Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: an in vivo confocal microscopic study., O'Rourke NA., Neuron. August 1, 1990; 5 (2): 159-71.


The expression of phosphorylated and non-phosphorylated forms of MAP5 in the amphibian CNS., Viereck C., Dev Biol. February 5, 1990; 508 (2): 257-64.   


The directed growth of retinal axons towards surgically transposed tecta in Xenopus; an examination of homing behaviour by retinal ganglion cell axons., Taylor JS., Development. January 1, 1990; 108 (1): 147-58.


A single-cell analysis of early retinal ganglion cell differentiation in Xenopus: from soma to axon tip., Holt CE., J Neurosci. September 1, 1989; 9 (9): 3123-45.   


Growth cone interactions with a glial cell line from embryonic Xenopus retina., Sakaguchi DS., Dev Biol. July 1, 1989; 134 (1): 158-74.   


Gradual appearance of a regulated retinotectal projection pattern in Xenopus laevis., O'Rourke NA., Dev Biol. March 1, 1989; 132 (1): 251-65.


Is the capacity for optic nerve regeneration related to continued retinal ganglion cell production in the frog?, Taylor JS., Eur J Neurosci. January 1, 1989; 1 (6): 626-38.


Retinal ganglion cell death induced by unilateral tectal ablation in Xenopus., Straznicky C., Vis Neurosci. January 1, 1989; 2 (4): 339-47.


A developmental and ultrastructural study of the optic chiasma in Xenopus., Wilson MA., Development. March 1, 1988; 102 (3): 537-53.


Retinal axons with and without their somata, growing to and arborizing in the tectum of Xenopus embryos: a time-lapse video study of single fibres in vivo., Harris WA., Development. September 1, 1987; 101 (1): 123-33.


A sharp retinal image increases the topographic precision of the goldfish retinotectal projection during optic nerve regeneration in stroboscopic light., Cook JE., Exp Brain Res. January 1, 1987; 68 (2): 319-28.


Cell distributions in the retinal ganglion cell layer of adult Leptodactylid frogs after premetamorphic eye rotation., Dunlop SA., J Embryol Exp Morphol. October 1, 1985; 89 159-73.


Topography of the retinal ganglion cell layer of Xenopus., Graydon ML., J Anat. August 1, 1984; 139 ( Pt 1) 145-57.


A morphometric study of the retinal ganglion cell layer and optic nerve from metamorphosis in Xenopus laevis., Dunlop SA., Vision Res. January 1, 1984; 24 (5): 417-27.


Retinal ganglion cell death and regeneration of abnormal retinotectal projections after removal of a segment of optic nerve in Xenopus tadpoles., Beazley LD., Dev Biol. July 15, 1981; 85 (1): 164-70.


Specification of retinotectal connexions during development of the toad Xenopus laevis., Sharma SC., J Embryol Exp Morphol. February 1, 1980; 55 77-92.


Optic nerve fibre counts and retinal ganglion cell counts during development of Xenopus laevis (Daudin)., Wilson MA., Q J Exp Physiol Cogn Med Sci. April 1, 1971; 56 (2): 83-91.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4