Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (116) Expression Attributions Wiki
XB-ANAT-3737

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3

Sort Newest To Oldest Sort Oldest To Newest

Light microscopy of GTP-binding protein (Go) immunoreactivity within the retina of different vertebrates., Terashima T., Dev Biol. December 15, 1987; 436 (2): 384-9.      


Immunocytochemical analysis of proenkephalin-derived peptides in the amphibian hypothalamus and optic tectum., Merchenthaler I., Dev Biol. July 28, 1987; 416 (2): 219-27.    


Double labeling of neural circuits using horseradish peroxidase and cobalt., Ebbesson SO., J Neurosci Methods. May 1, 1987; 20 (1): 1-5.


Visual deprivation and the maturation of the retinotectal projection in Xenopus laevis., Keating MJ., J Embryol Exp Morphol. February 1, 1986; 91 101-15.


Mauthner neurons survive metamorphosis in anurans: a comparative HRP study on the cytoarchitecture of Mauthner neurons in amphibians., Will U., J Comp Neurol. February 1, 1986; 244 (1): 111-20.


Factors guiding regenerating retinotectal fibres in the frog Xenopus laevis., Fawcett JW., J Embryol Exp Morphol. December 1, 1985; 90 233-50.


Map formation in the developing Xenopus retinotectal system: an examination of ganglion cell terminal arborizations., Sakaguchi DS., J Neurosci. December 1, 1985; 5 (12): 3228-45.


Projection patterns of lateral-line afferents in anurans: a comparative HRP study., Fritzsch B., J Comp Neurol. November 1, 1984; 229 (3): 451-69.


The relation between soma position and fibre trajectory of neurons in the mesencephalic trigeminal nucleus of Xenopus laevis., Lowe DA., Proc R Soc Lond B Biol Sci. June 22, 1984; 221 (1225): 437-54.


The central projections of lateral line and cutaneous sensory fibres (VII and X) in Xenopus laevis., Lowe DA., Proc R Soc Lond B Biol Sci. October 22, 1982; 216 (1204): 279-97.


Pineal complex of the clawed toad, Xenopus laevis Daud.: structure and function., Korf HW., Cell Tissue Res. January 1, 1981; 216 (1): 113-30.


An autoradiographic study of the retinal projection in Xenopus laevis with comparisons to Rana., Levine RL., J Comp Neurol. January 1, 1980; 189 (1): 1-29.


The relationship between retinal and tectal growth in larval Xenopus: implications for the development of the retino-tectal projection., Gaze RM., J Embryol Exp Morphol. October 1, 1979; 53 103-43.


The central pathways of optic fibres in Xenopus tadpoles., Steedman JG., J Embryol Exp Morphol. April 1, 1979; 50 199-215.


The distribution of non-synaptic intercellular junctions during neurone differentiation in the developing spinal cord of the clawed toad., Hayes BP., J Embryol Exp Morphol. April 1, 1975; 33 (2): 403-17.


The ultrastructure of gliosomes in the brains of amphibia., Srebro Z., J Cell Biol. August 1, 1965; 26 (2): 313-22.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3