Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (762) Expression Attributions Wiki
XB-ANAT-18

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Stable accumulation of a rat truncated repeat transcript in Xenopus oocytes., Gutierrez-Hartmann A., Proc Natl Acad Sci U S A. May 1, 1986; 83 (10): 3106-10.


Expression of two proopiomelanocortin genes in the pituitary gland of Xenopus laevis: complete structures of the two preprohormones., Martens GJ., Nucleic Acids Res. May 12, 1986; 14 (9): 3791-8.


The pituitary adrenocorticotropes originate from neural ridge tissue in Xenopus laevis., Eagleson GW., J Embryol Exp Morphol. June 1, 1986; 95 1-14.              


Regulation of melanotropin release from the pars intermedia of the amphibian Xenopus laevis: evaluation of the involvement of serotonergic, cholinergic, or adrenergic receptor mechanisms., Verburg-van Kemenade BM., Gen Comp Endocrinol. September 1, 1986; 63 (3): 471-80.


GABA and dopamine act directly on melanotropes of Xenopus to inhibit MSH secretion., Verburg-Van Kemenade BM., Brain Res Bull. November 1, 1986; 17 (5): 697-704.


Isolation of immunoreactive beta-endorphin-related and Met-enkephalin-related peptides from the posterior pituitary of the amphibian, Xenopus laevis., Dores RM., Peptides. January 1, 1987; 8 (6): 1119-25.


Regulation of MSH release from the neurointermediate lobe of Xenopus laevis by CRF-like peptides., Verburg-Van Kemenade BM., Peptides. January 1, 1987; 8 (6): 1093-100.


Assessment of TRH as a potential MSH release stimulating factor in Xenopus laevis., Verburg-van Kemenade BM., Peptides. January 1, 1987; 8 (1): 69-76.


An NPY-like peptide may function as MSH-release inhibiting factor in Xenopus laevis., Verburg-van Kemenade BM., Peptides. January 1, 1987; 8 (1): 61-7.


[Melanotropic activity in the hypophysis and blood of rats in the early postnatal period]., Panova IG., Dokl Akad Nauk SSSR. January 1, 1987; 295 (5): 1258-60.


Immunocytochemical localization and spatial relation to the adenohypophysis of a somatostatin-like and a corticotropin-releasing factor-like peptide in the brain of four amphibian species., Olivereau M., Cell Tissue Res. February 1, 1987; 247 (2): 317-24.


Spacer alterations which increase the expression of porcine growth hormone in E. coli., Vize PD., FEBS Lett. March 9, 1987; 213 (1): 155-8.


Physiologically-induced changes in proopiomelanocortin mRNA levels in the pituitary gland of the amphibian Xenopus laevis., Martens GJ., Biochem Biophys Res Commun. March 13, 1987; 143 (2): 678-84.      


Regulation of cyclic-AMP synthesis in amphibian melanotrope cells through catecholamine and GABA receptors., Verburg-van Kemenade BM., Life Sci. May 11, 1987; 40 (19): 1859-67.


Fundulus heteroclitus gonadotropin(s). I. Homologous bioassay using oocyte maturation and steroid production by isolated ovarian follicles., Lin YW., Gen Comp Endocrinol. July 1, 1987; 67 (1): 126-41.


Hormone action in newt limb regeneration: insulin and endorphins., Vethamany-Globus S., Biochem Cell Biol. August 1, 1987; 65 (8): 730-8.


N-terminal acetylation of melanophore-stimulating hormone in the pars intermedia of Xenopus laevis is a physiologically regulated process., Verburg-van Kemenade BM., Neuroendocrinology. October 1, 1987; 46 (4): 289-96.


Immunocytochemical studies of vasotocin, mesotocin, and neurophysins in the Xenopus hypothalamo-neurohypophysial system., Conway KM., J Comp Neurol. October 22, 1987; 264 (4): 494-508.


Visualization of secretory activities in the Xenopus neurohypophysis by a high S/N video camera., Terakawa S., Dev Biol. December 1, 1987; 435 (1-2): 380-6.


Mechanism of membrane electrical response to thyrotropin-releasing hormone in Xenopus oocytes injected with GH3 pituitary cell messenger ribonucleic acid., Oron Y., Mol Endocrinol. December 1, 1987; 1 (12): 918-25.


Coupling of inositol phospholipid hydrolysis to peptide hormone receptors expressed from adrenal and pituitary mRNA in Xenopus laevis oocytes., McIntosh RP., Proc Natl Acad Sci U S A. December 1, 1987; 84 (24): 9045-8.


Decreased TRH receptor mRNA activity precedes homologous downregulation: assay in oocytes., Oron Y., Science. December 4, 1987; 238 (4832): 1406-8.


Differences in receptor-evoked membrane electrical responses in native and mRNA-injected Xenopus oocytes., Oron Y., Proc Natl Acad Sci U S A. June 1, 1988; 85 (11): 3820-4.


Comparison of a carboxypeptidase E-like enzyme in human, bovine, mouse, Xenopus, shark and Aplysia neural tissue., Fricker LD., Dev Biol. June 21, 1988; 453 (1-2): 281-6.


Cloning and sequence analysis of human pituitary cDNA encoding the novel polypeptide 7B2., Martens GJ., FEBS Lett. July 4, 1988; 234 (1): 160-4.


Temporal pattern of appearance and distribution of cholecystokinin-like peptides during development in Xenopus laevis., Scalise FW., Gen Comp Endocrinol. November 1, 1988; 72 (2): 303-11.    


Functional expression of rat pituitary gonadotrophin-releasing hormone receptors in Xenopus oocytes., Eidne KA., J Mol Endocrinol. November 1, 1988; 1 (3): R9-12.


Several hypothalamic peptides stimulate in vitro thyrotropin secretion by pituitaries of anuran amphibians., Denver RJ., Gen Comp Endocrinol. December 1, 1988; 72 (3): 383-93.


Melanin concentrating hormone. V. Isolation and characterization of alpha-melanocyte-stimulating hormone from frog pituitary glands., Tonon MC., Life Sci. January 1, 1989; 45 (13): 1155-61.


Modulation of Neuropeptide-lnduced Membrane Currents by Protein Kinase C in Xenopus Oocytes Injected with GH Pituitary Cell Poly(A) RNA., Mahlmann S., J Neuroendocrinol. February 1, 1989; 1 (1): 65-9.


Purification and characterization of bullfrog growth hormone., Kobayashi T., Gen Comp Endocrinol. March 1, 1989; 73 (3): 417-24.


Particular processing of pro-opiomelanocortin in Xenopus laevis intermediate pituitary. Sequencing of alpha- and beta-melanocyte-stimulating hormones., Rouillé Y., FEBS Lett. March 13, 1989; 245 (1-2): 215-8.


Calcium channels that are required for secretion from intact nerve terminals of vertebrates are sensitive to omega-conotoxin and relatively insensitive to dihydropyridines. Optical studies with and without voltage-sensitive dyes., Obaid AL., J Gen Physiol. April 1, 1989; 93 (4): 715-29.


The novel pituitary polypeptide 7B2 is a highly-conserved protein coexpressed with proopiomelanocortin., Martens GJ., Eur J Biochem. April 15, 1989; 181 (1): 75-9.


Expression of two growth hormone genes in the Xenopus pituitary gland., Martens GJ., Nucleic Acids Res. May 25, 1989; 17 (10): 3974.


Receptor number determines latency and amplitude of the thyrotropin-releasing hormone response in Xenopus oocytes injected with pituitary RNA., Straub RE., Mol Endocrinol. June 1, 1989; 3 (6): 907-14.


Hydrins, hydroosmotic neurohypophysial peptides: osmoregulatory adaptation in amphibians through vasotocin precursor processing., Rouillé Y., Proc Natl Acad Sci U S A. July 1, 1989; 86 (14): 5272-5.


Immunohistochemical localization of beta-endorphin-like material in the urodele and anuran amphibian tissues., Vethamany-Globus S., Gen Comp Endocrinol. August 1, 1989; 75 (2): 271-9.      


Development of a monoclonal antibody against recombinant neuroendocrine 7B2 protein., van Duijnhoven HL., FEBS Lett. September 25, 1989; 255 (2): 372-6.


Dynamics of background adaptation in Xenopus laevis: role of catecholamines and melanophore-stimulating hormone., van Zoest ID., Gen Comp Endocrinol. October 1, 1989; 76 (1): 19-28.


Expression of phenolic and tyrosyl ring iodothyronine deiodinases in Xenopus laevis oocytes is dependent on the tissue source of injected poly(A)+ RNA., St Germain DL., Mol Endocrinol. December 1, 1989; 3 (12): 2049-53.


Chloride channels mediate the response to gonadotropin-releasing hormone (GnRH) in Xenopus oocytes injected with rat anterior pituitary mRNA., Yoshida S., Mol Endocrinol. December 1, 1989; 3 (12): 1953-60.


Molecular cloning of the thyrotropin receptor., Parmentier M., Science. December 22, 1989; 246 (4937): 1620-2.


Detection of N-acetylated forms of beta-endorphin and nonacetylated alpha-MSH in the intermediate pituitary of the toad, Bufo marinus., Steveson TC., Peptides. January 1, 1990; 11 (4): 797-803.


Inhibin and related proteins: localization, regulation, and effects., de Jong FH., Adv Exp Med Biol. January 1, 1990; 274 271-93.


Gonadotropin-releasing hormone receptor expression in Xenopus oocytes., Sealfon SC., Mol Endocrinol. January 1, 1990; 4 (1): 119-24.


Mesoderm-inducing factor from bovine amniotic fluid: purification and N-terminal amino acid sequence determination., Chertov OYu., Biomed Sci. January 1, 1990; 1 (5): 499-506.


A slow and a fast secretory compartment of POMC-derived peptides in the neurointermediate lobe of the amphibian Xenopus laevis., Van Zoest ID., Comp Biochem Physiol C Comp Pharmacol Toxicol. January 1, 1990; 96 (1): 199-203.


Xenopus laevis oocytes injected with mammalian pituitary mRNA as a model system for study of thyrotropin-releasing hormone action., Gershengorn MC., J Exp Zool Suppl. January 1, 1990; 4 78-83.


Activin as a cell differentiation factor., Ueno N., Prog Growth Factor Res. January 1, 1990; 2 (2): 113-24.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 ???pagination.result.next???