Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (41) Expression Attributions Wiki
XB-ANAT-791

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

THE DEVELOPMENT OF EMBRYOS DERIVED FROM THE TRANSPLANTATION OF NEURAL ECTODERM CELL NUCLEI IN XENOPUS LAEVIS., SIMNETT JD., Dev Biol. December 1, 1964; 10 467-86.


Cell lineage and the induction of second nervous systems in amphibian development., Gimlich RL., Nature. December 1, 1983; 306 (5942): 471-3.


Differential interaction of Xenopus embryonic cells with fibronectin in vitro., Winklbauer R., Dev Biol. November 1, 1988; 130 (1): 175-83.


A gradient of homeodomain protein in developing forelimbs of Xenopus and mouse embryos., Oliver G., Cell. December 23, 1988; 55 (6): 1017-24.        


Cellular contacts required for neural induction in Xenopus embryos: evidence for two signals., Dixon JE., Development. August 1, 1989; 106 (4): 749-57.


Single cell analysis of mesoderm formation in the Xenopus embryo., Godsave SF., Development. February 1, 1991; 111 (2): 523-30.


Regulation of embryonic cell adhesion by the cadherin cytoplasmic domain., Kintner C., Cell. April 17, 1992; 69 (2): 225-36.          


Planar and vertical signals in the induction and patterning of the Xenopus nervous system., Ruiz i Altaba A., Development. September 1, 1992; 116 (1): 67-80.


Differential expression of a Distal-less homeobox gene Xdll-2 in ectodermal cell lineages., Dirksen ML., Mech Dev. April 1, 1994; 46 (1): 63-70.          


Specific modulation of ectodermal cell fates in Xenopus embryos by glycogen synthase kinase., Itoh K., Development. December 1, 1995; 121 (12): 3979-88.              


Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor., Thomsen GH., Development. August 1, 1996; 122 (8): 2359-66.              


Inhibitory control of neural differentiation in mammalian cells., Hoodless PA., Dev Genes Evol. May 1, 1997; 207 (1): 19-28.


Xenopus Zic3, a primary regulator both in neural and neural crest development., Nakata K., Proc Natl Acad Sci U S A. October 28, 1997; 94 (22): 11980-5.            


NF-protocadherin, a novel member of the cadherin superfamily, is required for Xenopus ectodermal differentiation., Bradley RS., Curr Biol. March 12, 1998; 8 (6): 325-34.        


Smad6 functions as an intracellular antagonist of some TGF-beta family members during Xenopus embryogenesis., Nakayama T., Genes Cells. June 1, 1998; 3 (6): 387-94.                


A constitutively activated mutant of galphaq down-regulates EP-cadherin expression and decreases adhesion between ectodermal cells at gastrulation., Rizzoti K., Mech Dev. August 1, 1998; 76 (1-2): 19-31.                


The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation., Kim SH., Development. December 1, 1998; 125 (23): 4681-90.                      


Xenopus GDF6, a new antagonist of noggin and a partner of BMPs., Chang C., Development. August 1, 1999; 126 (15): 3347-57.              


Signaling mechanisms in pituitary morphogenesis and cell fate determination., Dasen JS., Curr Opin Cell Biol. December 1, 1999; 11 (6): 669-77.


Xoom is required for epibolic movement of animal ectodermal cells in Xenopus laevis gastrulation., Hasegawa K., Dev Growth Differ. August 1, 2000; 42 (4): 337-46.              


A PTP-PEST-like protein affects alpha5beta1-integrin-dependent matrix assembly, cell adhesion, and migration in Xenopus gastrula., Cousin H., Dev Biol. January 15, 2004; 265 (2): 416-32.                  


Functional role of a novel ternary complex comprising SRF and CREB in expression of Krox-20 in early embryos of Xenopus laevis., Watanabe T., Dev Biol. January 15, 2005; 277 (2): 508-21.                


Conditional BMP inhibition in Xenopus reveals stage-specific roles for BMPs in neural and neural crest induction., Wawersik S., Dev Biol. January 15, 2005; 277 (2): 425-42.                    


RE-1 silencer of transcription/neural restrictive silencer factor modulates ectodermal patterning during Xenopus development., Olguín P., J Neurosci. March 8, 2006; 26 (10): 2820-9.                    


Subcellular translocation signals regulate Geminin activity during embryonic development., Boos A., Biol Cell. June 1, 2006; 98 (6): 363-75.


Induction and specification of cranial placodes., Schlosser G., Dev Biol. June 15, 2006; 294 (2): 303-51.                


The Xenopus POU class V transcription factor XOct-25 inhibits ectodermal competence to respond to bone morphogenetic protein-mediated embryonic induction., Takebayashi-Suzuki K., Mech Dev. January 1, 2007; 124 (11-12): 840-55.    


FoxI1e activates ectoderm formation and controls cell position in the Xenopus blastula., Mir A., Development. February 1, 2007; 134 (4): 779-88.                  


Xenopus Tetraspanin-1 regulates gastrulation movements and neural differentiation in the early Xenopus embryo., Yamamoto Y., Differentiation. March 1, 2007; 75 (3): 235-45.          


Animal Cap Isolation from Xenopus laevis., Sive HL., CSH Protoc. June 1, 2007; 2007 pdb.prot4744.


PAR1 specifies ciliated cells in vertebrate ectoderm downstream of aPKC., Ossipova O., Development. December 1, 2007; 134 (23): 4297-306.          


A highly conserved Poc1 protein characterized in embryos of the hydrozoan Clytia hemisphaerica: localization and functional studies., Fourrage C., PLoS One. November 16, 2010; 5 (11): e13994.              


The kinase SGK1 in the endoderm and mesoderm promotes ectodermal survival by down-regulating components of the death-inducing signaling complex., Endo T., Sci Signal. January 18, 2011; 4 (156): ra2.


The formation and positioning of cilia in Ciona intestinalis embryos in relation to the generation and evolution of chordate left-right asymmetry., Thompson H., Dev Biol. April 15, 2012; 364 (2): 214-23.


sfrp1 promotes cardiomyocyte differentiation in Xenopus via negative-feedback regulation of Wnt signalling., Gibb N., Development. April 1, 2013; 140 (7): 1537-49.                                    


Par6b regulates the dynamics of apicobasal polarity during development of the stratified Xenopus epidermis., Wang S., PLoS One. October 8, 2013; 8 (10): e76854.                      


Polarized Wnt signaling regulates ectodermal cell fate in Xenopus., Huang YL., Dev Cell. April 28, 2014; 29 (2): 250-7.                  


Tissue cohesion and the mechanics of cell rearrangement., David R., Development. October 1, 2014; 141 (19): 3672-82.    


Vangl2 cooperates with Rab11 and Myosin V to regulate apical constriction during vertebrate gastrulation., Ossipova O., Development. January 1, 2015; 142 (1): 99-107.                        


Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae., Taniguchi Y., Sci Rep. June 18, 2015; 5 11428.                


Wide and high resolution tension measurement using FRET in embryo., Yamashita S., Sci Rep. June 23, 2016; 6 28535.          

???pagination.result.page??? 1