Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (18) Expression Attributions Wiki
XB-ANAT-3917

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Observations on the development of ascending spinal pathways in the clawed toad, Xenopus laevis., ten Donkelaar HJ., Anat Embryol (Berl). January 1, 1991; 183 (6): 589-603.


Primitive roles for inhibitory interneurons in developing frog spinal cord., Li WC., J Neurosci. June 23, 2004; 24 (25): 5840-8.                


Axon and dendrite geography predict the specificity of synaptic connections in a functioning spinal cord network., Li WC., Neural Dev. September 10, 2007; 2 17.              


Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles., Li WC., J Physiol. April 15, 2009; 587 (Pt 8): 1677-93.                    


How neurons generate behavior in a hatchling amphibian tadpole: an outline., Roberts A., Front Behav Neurosci. June 28, 2010; 4 16.            


Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles., Berkowitz A., Front Behav Neurosci. June 28, 2010; 4 36.                    


Modeling the connectome of a simple spinal cord., Borisyuk R., Front Neuroinform. September 23, 2011; 5 20.                  


A functional scaffold of CNS neurons for the vertebrates: the developing Xenopus laevis spinal cord., Roberts A., Dev Neurobiol. April 1, 2012; 72 (4): 575-84.        


A developmental approach to predicting neuronal connectivity from small biological datasets: a gradient-based neuron growth model., Borisyuk R., PLoS One. February 3, 2014; 9 (2): e89461.                


Sensory initiation of a co-ordinated motor response: synaptic excitation underlying simple decision-making., Buhl E., J Physiol. October 1, 2015; 593 (19): 4423-37.                


Mechanisms underlying the endogenous dopaminergic inhibition of spinal locomotor circuit function in Xenopus tadpoles., Picton LD., Sci Rep. October 20, 2016; 6 35749.                


The modulation of two motor behaviors by persistent sodium currents in Xenopus laevis tadpoles., Svensson E., J Neurophysiol. July 1, 2017; 118 (1): 121-130.        


Studying the role of axon fasciculation during development in a computational model of the Xenopus tadpole spinal cord., Davis O., Sci Rep. October 19, 2017; 7 (1): 13551.                          


To swim or not to swim: A population-level model of Xenopus tadpole decision making and locomotor behaviour., Borisyuk R., Biosystems. November 1, 2017; 161 3-14.                        


A simple decision to move in response to touch reveals basic sensory memory and mechanisms for variable response times., Koutsikou S., J Physiol. December 1, 2018; 596 (24): 6219-6233.                


Stimulation of Single, Possible CHX10 Hindbrain Neurons Turns Swimming On and Off in Young Xenopus Tadpoles., Li WC., Front Cell Neurosci. January 1, 2019; 13 47.            


Mechanisms Underlying the Recruitment of Inhibitory Interneurons in Fictive Swimming in Developing Xenopus laevis Tadpoles., Ferrario A., J Neurosci. February 22, 2023; 43 (8): 1387-1404.                            


From tadpole to adult frog locomotion., Sillar KT., Curr Opin Neurobiol. October 1, 2023; 82 102753.      

???pagination.result.page??? 1