Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (128) Expression Attributions Wiki
XB-ANAT-3730

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

An estrogen receptor from Xenopus laevis liver possibly connected with vitellogenin synthesis., Westley B., Cell. October 1, 1978; 15 (2): 367-74.


The DNase I sensitivity of Xenopus laevis genes transcribed by RNA polymerase III., Coveney J., Nature. August 5, 1982; 298 (5874): 578-80.


Rapid estrogen metabolism and vitellogenin gene expression in Xenopus hepatocyte cultures., Tenniswood MP., Mol Cell Endocrinol. June 1, 1983; 30 (3): 329-45.


Selective block of albumin gene expression in chick embryo hepatocytes cultured without hormones and its partial reversal by insulin., Plant PW., J Biol Chem. December 25, 1983; 258 (24): 15355-60.


Karyoskeletal proteins and the organization of the amphibian oocyte nucleus., Benavente R., J Cell Sci Suppl. January 1, 1984; 1 161-86.                    


Unequal activation by estrogen of individual Xenopus vitellogenin genes during development., Ng WC., Dev Biol. March 1, 1984; 102 (1): 238-47.


Regulation by estrogen receptor of vitellogenin gene transcription in Xenopus hepatocyte cultures., Perlman AJ., Mol Cell Endocrinol. December 1, 1984; 38 (2-3): 151-61.


Deinduction of transcription of Xenopus 74-kDa albumin genes and destabilization of mRNA by estrogen in vivo and in hepatocyte cultures., Wolffe AP., Eur J Biochem. February 1, 1985; 146 (3): 489-96.


Inhibition by estradiol of binding and mitogenic effect of epidermal growth factor in primary cultures of Xenopus hepatocytes., Wolffe AP., Mol Cell Endocrinol. May 1, 1985; 40 (2-3): 167-73.


In vitro growth of adult amphibian (Xenopus laevis) hepatocytes and characterization of hepatocyte-proliferating activity in homologous serum., Kawahara A., Exp Cell Res. August 1, 1985; 159 (2): 344-52.


Galactoside-binding serum lectin of Xenopus laevis. Estrogen-dependent hepatocyte synthesis and relationship to oocyte lectin., Roberson MM., J Biol Chem. September 15, 1985; 260 (20): 11027-32.


Specific switching on of silent egg protein genes in vitro by an S-100 fraction in isolated nuclei from male Xenopus., Tata JR., EMBO J. December 1, 1985; 4 (12): 3253-8.


The histone H1(0)/H5 variant and terminal differentiation of cells during development of Xenopus laevis., Moorman AF., Differentiation. January 1, 1987; 35 (2): 100-7.            


A change of the hepatocyte population is responsible for the progressive increase of vitellogenin synthetic capacity at and after metamorphosis of Xenopus laevis., Kawahara A., Dev Biol. July 1, 1987; 122 (1): 139-45.


Tissue-specificity of liver gene expression: a common liver-specific promoter element., Kugler W., Nucleic Acids Res. April 25, 1988; 16 (8): 3165-74.


Effect of anti-ER antibodies within the ER lumen of living cells., Valle G., Exp Cell Res. June 1, 1988; 176 (2): 221-33.


Hepatocyte-specific promoter element HP1 of the Xenopus albumin gene interacts with transcriptional factors of mammalian hepatocytes., Schorpp M., J Mol Biol. July 20, 1988; 202 (2): 307-20.


Liver cell specific gene transcription in vitro: the promoter elements HP1 and TATA box are necessary and sufficient to generate a liver-specific promoter., Ryffel GU., Nucleic Acids Res. February 11, 1989; 17 (3): 939-53.


Nucleolin from Xenopus laevis: cDNA cloning and expression during development., Caizergues-Ferrer M., Genes Dev. March 1, 1989; 3 (3): 324-33.                  


Thyroid hormone directly induces hepatocyte competence for estrogen-dependent vitellogenin synthesis during the metamorphosis of Xenopus laevis., Kawahara A., Dev Biol. March 1, 1989; 132 (1): 73-80.


Expression of the hepatocyte Na+/bile acid cotransporter in Xenopus laevis oocytes., Hagenbuch B., J Biol Chem. April 5, 1990; 265 (10): 5357-60.


An NF1-related vitellogenin activator element mediates transcription from the estrogen-regulated Xenopus laevis vitellogenin promoter., Chang TC., J Biol Chem. May 15, 1990; 265 (14): 8176-82.


Developmental expression of fibrillarin and U3 snRNA in Xenopus laevis., Caizergues-Ferrer M., Development. May 1, 1991; 112 (1): 317-26.            


Two distinct placental lactogen-like substances in serum during mid-pregnancy in the rat., Furuyama N., Endocrinol Jpn. October 1, 1991; 38 (5): 533-40.


Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system., Hagenbuch B., Proc Natl Acad Sci U S A. December 1, 1991; 88 (23): 10629-33.


Expression of the hepatocellular chloride-dependent sulfobromophthalein uptake system in Xenopus laevis oocytes., Jacquemin E., J Clin Invest. December 1, 1991; 88 (6): 2146-9.


tpr-met oncogene product induces maturation-producing factor activation in Xenopus oocytes., Daar IO., Mol Cell Biol. December 1, 1991; 11 (12): 5985-91.


A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain., Dirksen ML., Genes Dev. April 1, 1992; 6 (4): 599-608.              


Study of the function and regulation of liver N-CAM in Xenopus laevis., Tacchetti C., Eur J Cell Biol. April 1, 1992; 57 (2): 236-43.


Reprogramming of nucleolar gene expression during the acclimatization of the carp., Vera MI., Cell Mol Biol Res. January 1, 1993; 39 (7): 665-74.


Identification of nine tissue-specific transcription factors of the hepatocyte nuclear factor 3/forkhead DNA-binding-domain family., Clevidence DE., Proc Natl Acad Sci U S A. May 1, 1993; 90 (9): 3948-52.


Characterization and expression of a novel Na(+)-inorganic phosphate transporter at the liver plasma membrane of the rat., Ghishan FK., Gastroenterology. August 1, 1993; 105 (2): 519-26.


Characterization of the third member of the MCAT family of cationic amino acid transporters. Identification of a domain that determines the transport properties of the MCAT proteins., Closs EI., J Biol Chem. October 5, 1993; 268 (28): 20796-800.


Transcriptional regulation of the Xenopus laevis B beta fibrinogen subunit gene by glucocorticoids and hepatocyte nuclear factor 1: analysis by transfection into primary liver cells., Roberts LR., Biochemistry. November 2, 1993; 32 (43): 11627-37.


Sequential expression of HNF-3 beta and HNF-3 alpha by embryonic organizing centers: the dorsal lip/node, notochord and floor plate., Ruiz i Altaba A., Mech Dev. December 1, 1993; 44 (2-3): 91-108.                


Genomic structure of the Xenopus laevis liver transcription factor LFB1., Zapp D., Gene. December 8, 1993; 134 (2): 251-6.


DNA-binding properties and secondary structural model of the hepatocyte nuclear factor 3/fork head domain., Li C., Proc Natl Acad Sci U S A. December 15, 1993; 90 (24): 11583-7.


Coexpression of glucose transporters and glucokinase in Xenopus oocytes indicates that both glucose transport and phosphorylation determine glucose utilization., Morita H., J Clin Invest. October 1, 1994; 94 (4): 1373-82.


A morphological study of liver lesions in Xenopus larvae exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) with special reference to apoptosis of hepatocytes., Sakamoto MK., J Environ Pathol Toxicol Oncol. January 1, 1995; 14 (2): 69-82.


Organization of centromeric domains in hepatocyte nuclei: rearrangement associated with de novo activation of the vitellogenin gene family in Xenopus laevis., Janevski J., Exp Cell Res. April 1, 1995; 217 (2): 227-39.


Evidence for a hepatocyte membrane fatty acid transport protein using rat liver mRNA expression in Xenopus laevis oocytes., Fitscher BA., Biochim Biophys Acta. April 28, 1995; 1256 (1): 47-51.


alpha 1-Antitrypsin Mmalton (Phe52-deleted) forms loop-sheet polymers in vivo. Evidence for the C sheet mechanism of polymerization., Lomas DA., J Biol Chem. July 14, 1995; 270 (28): 16864-70.


Two regions of GLUT 2 glucose transporter protein are responsible for its distinctive affinity for glucose., Buchs A., Endocrinology. October 1, 1995; 136 (10): 4224-30.


Mechanisms of hepatic transport and bile secretion., Erlinger S., Acta Gastroenterol Belg. January 1, 1996; 59 (2): 159-62.


The Xenopus homologue of hepatocyte growth factor-like protein is specifically expressed in the presumptive neural plate during gastrulation., Aberger F., Mech Dev. January 1, 1996; 54 (1): 23-37.                    


A fork head related multigene family is transcribed in Xenopus laevis embryos., Lef J., Int J Dev Biol. February 1, 1996; 40 (1): 245-53.  


Injection of rat hepatocyte poly(A)+ RNA to Xenopus laevis oocytes leads to expression of a constitutively-active divalent cation channel distinguishable from endogenous receptor-activated channels., Auld AM., Cell Calcium. May 1, 1996; 19 (5): 439-52.


Cell-free assembly of rough and smooth endoplasmic reticulum., Lavoie C., J Cell Sci. June 1, 1996; 109 ( Pt 6) 1415-25.


Review article: new insights into the mechanisms of hepatic transport and bile secretion., Erlinger S., J Gastroenterol Hepatol. June 1, 1996; 11 (6): 575-9.


Cloning and expression of Xenopus HGF-like protein (HLP) and Ron/HLP receptor implicate their involvement in early neural development., Nakamura T., Biochem Biophys Res Commun. July 16, 1996; 224 (2): 564-73.          

???pagination.result.page??? 1 2 3 ???pagination.result.next???