Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6783) Expression Attributions Wiki
XB-ANAT-730

Papers associated with visual system (and fn1)

Limit to papers also referencing gene:
Show all visual system papers
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2

Sort Newest To Oldest Sort Oldest To Newest

Essential role of non-canonical Wnt signalling in neural crest migration., De Calisto J., Development. June 1, 2005; 132 (11): 2587-97.              


Planar cell polarity genes regulate polarized extracellular matrix deposition during frog gastrulation., Goto T., Curr Biol. April 26, 2005; 15 (8): 787-93.        


The mode and molecular mechanisms of the migration of presumptive PGC in the endoderm cell mass of Xenopus embryos., Nishiumi F., Dev Growth Differ. January 1, 2005; 47 (1): 37-48.                  


Cross-regulation of Wnt signaling and cell adhesion., Schambony A., Differentiation. September 1, 2004; 72 (7): 307-18.


Patterning and tissue movements in a novel explant preparation of the marginal zone of Xenopus laevis., Davidson LA., Gene Expr Patterns. July 1, 2004; 4 (4): 457-66.        


The RNA-binding protein Vg1 RBP is required for cell migration during early neural development., Yaniv K., Development. December 1, 2003; 130 (23): 5649-61.              


Differential regulation of cell adhesive functions by integrin alpha subunit cytoplasmic tails in vivo., Na J., J Cell Sci. June 1, 2003; 116 (Pt 11): 2333-43.


Nuclear translocation of Xenopus laevis paxillin., Ogawa M., Biochem Biophys Res Commun. May 16, 2003; 304 (4): 676-83.


The function of Xenopus germ cell nuclear factor (xGCNF) in morphogenetic movements during neurulation., Barreto G., Dev Biol. May 15, 2003; 257 (2): 329-42.            


On the turning of Xenopus retinal axons induced by ephrin-A5., Weinl C., Development. April 1, 2003; 130 (8): 1635-43.


Molecular cloning, expression and partial characterization of Xksy, Xenopus member of the Sky family of receptor tyrosine kinases., Kishi YA., Gene. April 17, 2002; 288 (1-2): 29-40.              


Mechanisms of mesendoderm internalization in the Xenopus gastrula: lessons from the ventral side., Ibrahim H., Dev Biol. December 1, 2001; 240 (1): 108-22.                      


Regulation of cell polarity, radial intercalation and epiboly in Xenopus: novel roles for integrin and fibronectin., Marsden M., Development. September 1, 2001; 128 (18): 3635-47.                        


Xenopus ADAM 13 is a metalloprotease required for cranial neural crest-cell migration., Alfandari D, Alfandari D., Curr Biol. June 26, 2001; 11 (12): 918-30.            


Identification and characterization of roundabout orthologs in zebrafish., Challa AK., Mech Dev. March 1, 2001; 101 (1-2): 249-53.


Heterotopic expression of the Xl-Fli transcription factor during Xenopus embryogenesis: modification of cell adhesion and engagement in the apoptotic pathway., Goltzené F., Exp Cell Res. November 1, 2000; 260 (2): 233-47.


Xoom is required for epibolic movement of animal ectodermal cells in Xenopus laevis gastrulation., Hasegawa K., Dev Growth Differ. August 1, 2000; 42 (4): 337-46.              


Survival of the retinal pigment epithelium in vitro: comparison of freshly isolated and subcultured cells., Uebersax ED., Exp Eye Res. March 1, 2000; 70 (3): 381-90.


Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis., Osada SI., Development. June 1, 1999; 126 (14): 3229-40.                


Molecular cloning of XNLRR-1, a Xenopus homolog of mouse neuronal leucine-rich repeat protein expressed in the developing Xenopus nervous system., Hayata T., Gene. October 9, 1998; 221 (1): 159-66.          


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            


Xwnt-2b is a novel axis-inducing Xenopus Wnt, which is expressed in embryonic brain., Landesman Y., Mech Dev. May 1, 1997; 63 (2): 199-209.            


ADAM 13: a novel ADAM expressed in somitic mesoderm and neural crest cells during Xenopus laevis development., Alfandari D, Alfandari D., Dev Biol. February 15, 1997; 182 (2): 314-30.      


Evidence for beta 1-integrins on both apical and basal surfaces of Xenopus retinal pigment epithelium., Chen W., Exp Eye Res. January 1, 1997; 64 (1): 73-84.              


Integrin-dependent adhesive activity is spatially controlled by inductive signals at gastrulation., Ramos JW., Development. September 1, 1996; 122 (9): 2873-83.


Integrin alpha 6 expression is required for early nervous system development in Xenopus laevis., Lallier TE., Development. August 1, 1996; 122 (8): 2539-54.                                  


Specific modulation of ectodermal cell fates in Xenopus embryos by glycogen synthase kinase., Itoh K., Development. December 1, 1995; 121 (12): 3979-88.              


Integrin alpha v subunit is expressed on mesodermal cell surfaces during amphibian gastrulation., Alfandari D, Alfandari D., Dev Biol. August 1, 1995; 170 (2): 249-61.


Dorsalizing and neuralizing properties of Xdsh, a maternally expressed Xenopus homolog of dishevelled., Sokol SY., Development. June 1, 1995; 121 (6): 1637-47.              


Expression of a homologue of the deleted in colorectal cancer (DCC) gene in the nervous system of developing Xenopus embryos., Pierceall WE., Dev Biol. December 1, 1994; 166 (2): 654-65.              


Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity., Hemmati-Brivanlou A., Cell. April 22, 1994; 77 (2): 283-95.                    


Injected Wnt RNA induces a complete body axis in Xenopus embryos., Sokol S., Cell. November 15, 1991; 67 (4): 741-52.              


Growth cone interactions with a glial cell line from embryonic Xenopus retina., Sakaguchi DS., Dev Biol. July 1, 1989; 134 (1): 158-74.                    


Fibronectin distribution during cell type conversion in newt lens regeneration., Elgert KL., Anat Embryol (Berl). January 1, 1989; 180 (2): 131-42.


Embryonic and regenerating Xenopus retinal fibers are intrinsically different., Grant P., Dev Biol. April 1, 1986; 114 (2): 475-91.

???pagination.result.page??? ???pagination.result.prev??? 1 2