Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6783) Expression Attributions Wiki
XB-ANAT-730

Papers associated with visual system (and calb1)

Limit to papers also referencing gene:
Show all visual system papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Sequential genesis and determination of cone and rod photoreceptors in Xenopus., Chang WS., J Neurobiol. June 1, 1998; 35 (3): 227-44.                


p27Xic1, a Cdk inhibitor, promotes the determination of glial cells in Xenopus retina., Ohnuma S., Cell. November 24, 1999; 99 (5): 499-510.              


Overexpression of FGF-2 alters cell fate specification in the developing retina of Xenopus laevis., Patel A., Dev Biol. June 1, 2000; 222 (1): 170-80.          


Amacrine cells of the anuran retina: morphology, chemical neuroanatomy, and physiology., Vígh J., Microsc Res Tech. September 1, 2000; 50 (5): 373-83.


Co-ordinating retinal histogenesis: early cell cycle exit enhances early cell fate determination in the Xenopus retina., Ohnuma S., Development. May 1, 2002; 129 (10): 2435-46.            


XOtx5b and XOtx2 regulate photoreceptor and bipolar fates in the Xenopus retina., Viczian AS., Development. April 1, 2003; 130 (7): 1281-94.                    


Targeted expression of the dominant-negative FGFR4a in the eye using Xrx1A regulatory sequences interferes with normal retinal development., Zhang L., Development. September 1, 2003; 130 (17): 4177-86.      


Alterations of rx1 and pax6 expression levels at neural plate stages differentially affect the production of retinal cell types and maintenance of retinal stem cell qualities., Zaghloul NA., Dev Biol. June 1, 2007; 306 (1): 222-40.                      


Nr2e3 and Nrl can reprogram retinal precursors to the rod fate in Xenopus retina., McIlvain VA., Dev Dyn. July 1, 2007; 236 (7): 1970-9.      


Xenopus NM23-X4 regulates retinal gliogenesis through interaction with p27Xic1., Mochizuki T., Neural Dev. January 5, 2009; 4 1.                      


The role of Xenopus Rx-L in photoreceptor cell determination., Wu HY., Dev Biol. March 15, 2009; 327 (2): 352-65.            


Generation of functional eyes from pluripotent cells., Viczian AS., PLoS Biol. August 1, 2009; 7 (8): e1000174.                                


Sumoylation controls retinal progenitor proliferation by repressing cell cycle exit in Xenopus laevis., Terada K., Dev Biol. November 1, 2010; 347 (1): 180-94.                                                  


WNK2 kinase is a novel regulator of essential neuronal cation-chloride cotransporters., Rinehart J., J Biol Chem. August 26, 2011; 286 (34): 30171-80.              


Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis., Pai VP., Development. January 1, 2012; 139 (2): 313-23.                


Melatonin receptors are anatomically organized to modulate transmission specifically to cone pathways in the retina of Xenopus laevis., Wiechmann AF., J Comp Neurol. April 15, 2012; 520 (6): 1115-27.                  


Hes4 controls proliferative properties of neural stem cells during retinal ontogenesis., El Yakoubi W., Stem Cells. December 1, 2012; 30 (12): 2784-95.              


Fgfr signaling is required as the early eye field forms to promote later patterning and morphogenesis of the eye., Atkinson-Leadbeater K., Dev Dyn. May 1, 2014; .              


Small GTPases Rab8a and Rab11a Are Dispensable for Rhodopsin Transport in Mouse Photoreceptors., Ying G., PLoS One. August 16, 2016; 11 (8): e0161236.                  


A model for investigating developmental eye repair in Xenopus laevis., Kha CX., Exp Eye Res. April 1, 2018; 169 38-47.                


C8orf46 homolog encodes a novel protein Vexin that is required for neurogenesis in Xenopus laevis., Moore KB., Dev Biol. May 1, 2018; 437 (1): 27-40.                  


Using the Xenopus Developmental Eye Regrowth System to Distinguish the Role of Developmental Versus Regenerative Mechanisms., Kha CX., Front Physiol. January 1, 2019; 10 502.                


CRISPR/Cas9-Mediated Models of Retinitis Pigmentosa Reveal Differential Proliferative Response of Müller Cells between Xenopus laevis and Xenopus tropicalis., Parain K., Cells. February 25, 2022; 11 (5):                   


Cell-type expression and activation by light of neuropsins in the developing and mature Xenopus retina., Man LLH., Front Cell Neurosci. January 1, 2023; 17 1266945.                  


Deleterious functional consequences of perfluoroalkyl substances accumulation into the myelin sheath., Butruille L., Environ Int. October 1, 2023; 180 108211.            

???pagination.result.page??? 1