Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3411) Expression Attributions Wiki
XB-ANAT-297

Papers associated with ventral

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Control of frequency during swimming in Xenopus embryos: a study on interneuronal recruitment in a spinal rhythm generator., Sillar KT., J Physiol. December 1, 1993; 472 557-72.


Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip., Gont LK., Development. December 1, 1993; 119 (4): 991-1004.                


Cwnt-8C: a novel Wnt gene with a potential role in primitive streak formation and hindbrain organization., Hume CR., Development. December 1, 1993; 119 (4): 1147-60.        


The ventral and posterior expression of the zebrafish homeobox gene eve1 is perturbed in dorsalized and mutant embryos., Joly JS., Development. December 1, 1993; 119 (4): 1261-75.


Competence prepattern in the animal hemisphere of the 8-cell-stage Xenopus embryo., Kinoshita K., Dev Biol. November 1, 1993; 160 (1): 276-84.        


Deep cytoplasmic rearrangements in axis-respecified Xenopus embryos., Denegre JM., Dev Biol. November 1, 1993; 160 (1): 157-64.          


Distinct elements of the xsna promoter are required for mesodermal and ectodermal expression., Mayor R., Development. November 1, 1993; 119 (3): 661-71.                  


v-erbA and citral reduce the teratogenic effects of all-trans retinoic acid and retinol, respectively, in Xenopus embryogenesis., Schuh TJ., Development. November 1, 1993; 119 (3): 785-98.                  


Integrin expression in early amphibian embryos: cDNA cloning and characterization of Xenopus beta 1, beta 2, beta 3, and beta 6 subunits., Ransom DG., Dev Biol. November 1, 1993; 160 (1): 265-75.                      


Neural induction by the secreted polypeptide noggin., Lamb TM., Science. October 29, 1993; 262 (5134): 713-8.


Induction of a secondary body axis in Xenopus by antibodies to beta-catenin., McCrea PD., J Cell Biol. October 1, 1993; 123 (2): 477-84.


Expression of Xenopus snail in mesoderm and prospective neural fold ectoderm., Essex LJ., Dev Dyn. October 1, 1993; 198 (2): 108-22.              


Suramin prevents transcription of dorsal marker genes in Xenopus laevis embryos, isolated dorsal blastopore lips and activin A induced animal caps., Oschwald R., Mech Dev. October 1, 1993; 43 (2-3): 121-33.


Melanization stimulating activity in the skin of the gilthead porgy, Sparus auratus., Zuasti A., Pigment Cell Res. October 1, 1993; 6 (5): 359-64.


Ectopic neural expression of a floor plate marker in frog embryos injected with the midline transcription factor Pintallavis., Ruiz i Altaba A., Proc Natl Acad Sci U S A. September 1, 1993; 90 (17): 8268-72.      


Isolation and characterization of Xenopus follistatin and activins., Fukui A., Dev Biol. September 1, 1993; 159 (1): 131-9.


Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis., Moon RT., Development. September 1, 1993; 119 (1): 97-111.                  


Cortical cytoplasm, which induces dorsal axis formation in Xenopus, is inactivated by UV irradiation of the oocyte., Holowacz T., Development. September 1, 1993; 119 (1): 277-85.          


XASH-3, a novel Xenopus achaete-scute homolog, provides an early marker of planar neural induction and position along the mediolateral axis of the neural plate., Zimmerman K., Development. September 1, 1993; 119 (1): 221-32.                


GABAB receptors modulate glycinergic inhibition and spike threshold in Xenopus embryo spinal neurones., Wall MJ., J Physiol. September 1, 1993; 469 275-90.


Expression of LIM class homeobox gene Xlim-3 in Xenopus development is limited to neural and neuroendocrine tissues., Taira M., Dev Biol. September 1, 1993; 159 (1): 245-56.              


Xenopus goosecoid: a gene expressed in the prechordal plate that has dorsalizing activity., Steinbeisser H., C R Acad Sci III. September 1, 1993; 316 (9): 959-71.


Immunocytochemistry and in situ hybridization of neuropeptide Y in the hypothalamus of Xenopus laevis in relation to background adaptation., Tuinhof R., Neuroscience. August 1, 1993; 55 (3): 667-75.


The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: studies of normal and regulated clones., Huang S., J Neurosci. August 1, 1993; 13 (8): 3193-210.


Induction of neuronal differentiation by planar signals in Xenopus embryos., Sater AK., Dev Dyn. August 1, 1993; 197 (4): 268-80.


Induction of cardiac muscle differentiation in isolated animal pole explants of Xenopus laevis embryos., Logan M., Development. July 1, 1993; 118 (3): 865-75.              


GATA-4 is a novel transcription factor expressed in endocardium of the developing heart., Kelley C., Development. July 1, 1993; 118 (3): 817-27.                


Catenins in Xenopus embryogenesis and their relation to the cadherin-mediated cell-cell adhesion system., Schneider S., Development. June 1, 1993; 118 (2): 629-40.                    


FGF signalling in the early specification of mesoderm in Xenopus., Amaya E., Development. June 1, 1993; 118 (2): 477-87.        


Xenopus axis formation: induction of goosecoid by injected Xwnt-8 and activin mRNAs., Steinbeisser H., Development. June 1, 1993; 118 (2): 499-507.          


Vital dye labelling of Xenopus laevis trunk neural crest reveals multipotency and novel pathways of migration., Collazo A., Development. June 1, 1993; 118 (2): 363-76.


Ipsilaterally projecting retinal ganglion cells in Xenopus laevis: an HRP study., Schütte M., J Comp Neurol. May 22, 1993; 331 (4): 482-94.


Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos., Coffman CR., Cell. May 21, 1993; 73 (4): 659-71.            


Noradrenaline in the brain of the South African clawed frog Xenopus laevis: a study with antibodies against noradrenaline and dopamine-beta-hydroxylase., González A., J Comp Neurol. May 15, 1993; 331 (3): 363-74.


A Xenopus homebox gene defines dorsal-ventral domains in the developing brain., Saha MS., Development. May 1, 1993; 118 (1): 193-202.              


Expression of a Xenopus Distal-less homeobox gene involved in forebrain and cranio-facial development., Dirksen ML., Mech Dev. May 1, 1993; 41 (2-3): 121-8.        


Occurrence of dorsal axis-inducing activity around the vegetal pole of an uncleaved Xenopus egg and displacement to the equatorial region by cortical rotation., Fujisue M., Development. May 1, 1993; 118 (1): 163-70.      


Spinal cord neuron classes in embryos of the smooth newt Triturus vulgaris: a horseradish peroxidase and immunocytochemical study., Harper CE., Philos Trans R Soc Lond B Biol Sci. April 29, 1993; 340 (1291): 141-60.


Murine stem cell factor stimulates erythropoietic differentiation of ventral mesoderm in Xenopus gastrula embryo., Ong RC., Exp Cell Res. April 1, 1993; 205 (2): 326-30.


The possible role of mesodermal growth factors in the formation of endoderm inXenopus laevis., Jones EA., Rouxs Arch Dev Biol. April 1, 1993; 202 (4): 233-239.


Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals., Papalopulu N., Development. March 1, 1993; 117 (3): 961-75.          


Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeo box gene., von Dassow G., Genes Dev. March 1, 1993; 7 (3): 355-66.                


The homeobox gene goosecoid controls cell migration in Xenopus embryos., Niehrs C., Cell. February 26, 1993; 72 (4): 491-503.              


Single-cell transplantation determines the time when Xenopus muscle precursor cells acquire a capacity for autonomous differentiation., Kato K., Proc Natl Acad Sci U S A. February 15, 1993; 90 (4): 1310-4.


Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm., Smith WC., Nature. February 11, 1993; 361 (6412): 547-9.


Early pattern of neuronal differentiation in the Xenopus embryonic brainstem and spinal cord., Hartenstein V., J Comp Neurol. February 8, 1993; 328 (2): 213-31.


In pursuit of the functions of the Wnt family of developmental regulators: insights from Xenopus laevis., Moon RT., Bioessays. February 1, 1993; 15 (2): 91-7.


Relationship between local cell division and cell displacement during regeneration of embryonic Xenopus eye fragments., Underwood LW., J Exp Zool. February 1, 1993; 265 (2): 165-77.


Developmental anomalies of Xenopus embryos following microinjection of SPARC antibodies., Purcell L., J Exp Zool. February 1, 1993; 265 (2): 153-64.


Evidence that the border of the neural plate may be positioned by the interaction between signals that induce ventral and dorsal mesoderm., Zhang J., Dev Dyn. February 1, 1993; 196 (2): 79-90.

???pagination.result.page??? ???pagination.result.prev??? 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 ???pagination.result.next???