Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3411) Expression Attributions Wiki
XB-ANAT-297

Papers associated with ventral

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Lefty-dependent inhibition of Nodal- and Wnt-responsive organizer gene expression is essential for normal gastrulation., Branford WW., Curr Biol. December 23, 2002; 12 (24): 2136-41.              


Molecular cloning and expression analysis of dystroglycan during Xenopus laevis embryogenesis., Lunardi A., Mech Dev. December 1, 2002; 119 Suppl 1 S49-54.      


Gene expression pattern analysis of the tight junction protein, Claudin, in the early morphogenesis of Xenopus embryos., Fujita M., Mech Dev. December 1, 2002; 119 Suppl 1 S27-30.      


Expression of the Wnt inhibitor, sFRP5, in the gut endoderm of Xenopus., Pilcher KE., Gene Expr Patterns. December 1, 2002; 2 (3-4): 369-72.  


Xolloid-related: a novel BMP1/Tolloid-related metalloprotease is expressed during early Xenopus development., Dale L., Mech Dev. December 1, 2002; 119 (2): 177-90.      


Expression of Brachyury during development of the dendrobatid frog Colostethus machalilla., Benítez MS., Dev Dyn. December 1, 2002; 225 (4): 592-6.  


Multiple maternal influences on dorsal-ventral fate of Xenopus animal blastomeres., Pandur PD., Dev Dyn. December 1, 2002; 225 (4): 581-7.


Early embryonic expression of ion channels and pumps in chick and Xenopus development., Rutenberg J., Dev Dyn. December 1, 2002; 225 (4): 469-84.                            


Rethinking axial patterning in amphibians., Lane MC., Dev Dyn. December 1, 2002; 225 (4): 434-47.


Anteroposterior patterning in Xenopus embryos: egg fragment assay system reveals a synergy of dorsalizing and posteriorizing embryonic domains., Fujii H., Dev Biol. December 1, 2002; 252 (1): 15-30.


Cellular patterning of the vertebrate embryo., Mathis L., Trends Genet. December 1, 2002; 18 (12): 627-35.


Beta-catenin/Tcf-regulated transcription prior to the midblastula transition., Yang J., Development. December 1, 2002; 129 (24): 5743-52.


Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus., Walmsley M., Development. December 1, 2002; 129 (24): 5683-95.          


Gene profiling during neural induction in Xenopus laevis: regulation of BMP signaling by post-transcriptional mechanisms and TAB3, a novel TAK1-binding protein., Muñoz-Sanjuán I., Development. December 1, 2002; 129 (23): 5529-40.    


Induction and patterning of the telencephalon in Xenopus laevis., Lupo G., Development. December 1, 2002; 129 (23): 5421-36.                            


Activin A induces craniofacial cartilage from undifferentiated Xenopus ectoderm in vitro., Furue M., Proc Natl Acad Sci U S A. November 26, 2002; 99 (24): 15474-9.    


Choline acetyltransferase immunoreactivity in the developing brain of Xenopus laevis., López JM., J Comp Neurol. November 25, 2002; 453 (4): 418-34.        


Lef-1 and Tcf-3 transcription factors mediate tissue-specific Wnt signaling during Xenopus development., Roël G., Curr Biol. November 19, 2002; 12 (22): 1941-5.


Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity., Persson M., Genes Dev. November 15, 2002; 16 (22): 2865-78.


A direct requirement for Hedgehog signaling for normal specification of all ventral progenitor domains in the presumptive mammalian spinal cord., Wijgerde M., Genes Dev. November 15, 2002; 16 (22): 2849-64.


Comparative distributions of pituitary adenylyl cyclase-activating polypeptide and its selective type I receptor mRNA in the frog (Xenopus laevis) brain., Hu Z., Regul Pept. November 15, 2002; 109 (1-3): 15-26.


Chondroitin sulfate disrupts axon pathfinding in the optic tract and alters growth cone dynamics., Walz A., J Neurobiol. November 15, 2002; 53 (3): 330-42.          


Hoxc-8 expression shows left-right asymmetry in the posterior lateral plate mesoderm., Thickett C., Gene Expr Patterns. November 1, 2002; 2 (1-2): 5-6.    


Anteroposterior axis formation in Xenopus limb bud recombinants: a model of pattern formation during limb regeneration., Yokoyama H., Dev Dyn. November 1, 2002; 225 (3): 277-88.          


The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling., Hikasa H., Development. November 1, 2002; 129 (22): 5227-39.                        


Xiro homeoproteins coordinate cell cycle exit and primary neuron formation by upregulating neuronal-fate repressors and downregulating the cell-cycle inhibitor XGadd45-gamma., de la Calle-Mustienes E., Mech Dev. November 1, 2002; 119 (1): 69-80.              


XETOR regulates the size of the proneural domain during primary neurogenesis in Xenopus laevis., Cao Y., Mech Dev. November 1, 2002; 119 (1): 35-44.                      


Ssdp proteins interact with the LIM-domain-binding protein Ldb1 to regulate development., Chen L., Proc Natl Acad Sci U S A. October 29, 2002; 99 (22): 14320-5.  


Expression of voltage-dependent potassium channels in the developing visual system of Xenopus laevis., Pollock NS., J Comp Neurol. October 28, 2002; 452 (4): 381-91.                


Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning., Levin M., Cell. October 4, 2002; 111 (1): 77-89.              


Xenopus laevis red cone opsin and Prph2 promoters allow transgene expression in amphibian cones, or both rods and cones., Moritz OL., Gene. October 2, 2002; 298 (2): 173-82.          


Expression pattern of the homeobox protein NKX2-1 in the developing Xenopus forebrain., González A., Brain Res Gene Expr Patterns. October 1, 2002; 1 (3-4): 181-5.


Common and distinct signals specify the distribution of blood and vascular cell lineages in Xenopus laevis embryos., Iraha F., Dev Growth Differ. October 1, 2002; 44 (5): 395-407.            


Axial progenitors with extensive potency are localised to the mouse chordoneural hinge., Cambray N., Development. October 1, 2002; 129 (20): 4855-66.


Dual origin of the floor plate in the avian embryo., Charrier JB., Development. October 1, 2002; 129 (20): 4785-96.          


Repressor element-1 silencing transcription/neuron-restrictive silencer factor is required for neural sodium channel expression during development of Xenopus., Armisén R., J Neurosci. October 1, 2002; 22 (19): 8347-51.                


Expression of UNC-5 in the developing Xenopus visual system., Anderson RB., Mech Dev. October 1, 2002; 118 (1-2): 157-60.      


The nodal target gene Xmenf is a component of an FGF-independent pathway of ventral mesoderm induction in Xenopus., Kumano G., Mech Dev. October 1, 2002; 118 (1-2): 45-56.    


A novel set of Wnt-Frizzled fusion proteins identifies receptor components that activate beta -catenin-dependent signaling., Holmen SL., J Biol Chem. September 20, 2002; 277 (38): 34727-35.                


Multiple thyroid hormone-induced muscle growth and death programs during metamorphosis in Xenopus laevis., Das B., Proc Natl Acad Sci U S A. September 17, 2002; 99 (19): 12230-5.          


Metalloproteases and guidance of retinal axons in the developing visual system., Webber CA., J Neurosci. September 15, 2002; 22 (18): 8091-100.                  


XPOX2-peroxidase expression and the XLURP-1 promoter reveal the site of embryonic myeloid cell development in Xenopus., Smith SJ., Mech Dev. September 1, 2002; 117 (1-2): 173-86.                    


Defining pallial and subpallial divisions in the developing Xenopus forebrain., Bachy I., Mech Dev. September 1, 2002; 117 (1-2): 163-72.            


Expression and role of Roundabout-1 in embryonic Xenopus forebrain., Connor RM., Dev Dyn. September 1, 2002; 225 (1): 22-34.      


Formation of neuroblasts in the embryonic central nervous system of Drosophila melanogaster is controlled by SoxNeuro., Buescher M., Development. September 1, 2002; 129 (18): 4193-203.


The roles of three signaling pathways in the formation and function of the Spemann Organizer., Xanthos JB., Development. September 1, 2002; 129 (17): 4027-43.                  


Repression of organizer genes in dorsal and ventral Xenopus cells mediated by maternal XTcf3., Houston DW., Development. September 1, 2002; 129 (17): 4015-25.          


Biliverdin during Xenopus laevis oogenesis and early embryogenesis., Montorzi M., Biochemistry. August 6, 2002; 41 (31): 10115-22.


Endostatin is a potential inhibitor of Wnt signaling., Hanai J., J Cell Biol. August 5, 2002; 158 (3): 529-39.            


Conserved expression control and shared activity between cognate T-box genes Tbx2 and Tbx3 in connection with Sonic hedgehog signaling during Xenopus eye development., Takabatake Y., Dev Growth Differ. August 1, 2002; 44 (4): 257-71.              

???pagination.result.page??? ???pagination.result.prev??? 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 ???pagination.result.next???