Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (501) Attributions Wiki
XB-STAGE-9

Papers associated with tailbud stage

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Xenopus Kazrin interacts with ARVCF-catenin, spectrin and p190B RhoGAP, and modulates RhoA activity and epithelial integrity., Cho K, Vaught TG, Ji H, Gu D, Papasakelariou-Yared C, Horstmann N, Jennings JM, Lee M, Sevilla LM, Kloc M, Reynolds AB, Watt FM, Brennan RG, Kowalczyk AP, McCrea PD., J Cell Sci. December 1, 2010; 123 (Pt 23): 4128-44.              


Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo., Tran HT, Sekkali B, Van Imschoot G, Janssens S, Vleminckx K, Vleminckx K., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.                                                


B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo., Okuda Y, Ogura E, Kondoh H, Kamachi Y., PLoS Genet. May 6, 2010; 6 (5): e1000936.                


The Pax3 and Pax7 paralogs cooperate in neural and neural crest patterning using distinct molecular mechanisms, in Xenopus laevis embryos., Maczkowiak F, Matéos S, Wang E, Roche D, Harland R, Monsoro-Burq AH., Dev Biol. April 15, 2010; 340 (2): 381-96.                                                    


En2, Pax2/5 and Tcf-4 transcription factors cooperate in patterning the Xenopus brain., Koenig SF, Brentle S, Hamdi K, Fichtner D, Wedlich D, Gradl D., Dev Biol. April 15, 2010; 340 (2): 318-28.                  


Regulation of photoreceptor gene expression by the retinal homeobox (Rx) gene product., Pan Y, Martinez-De Luna RI, Lou CH, Nekkalapudi S, Kelly LE, Sater AK, El-Hodiri HM., Dev Biol. March 15, 2010; 339 (2): 494-506.              


CHD7 cooperates with PBAF to control multipotent neural crest formation., Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, Chang CP, Zhao Y, Swigut T, Wysocka J., Nature. February 18, 2010; 463 (7283): 958-62.      


Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway., Luxardi G, Marchal L, Thomé V, Kodjabachian L., Development. February 1, 2010; 137 (3): 417-26.          


A non-enzymatic function of 17beta-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival., Rauschenberger K, Schöler K, Sass JO, Sauer S, Djuric Z, Rumig C, Wolf NI, Okun JG, Kölker S, Schwarz H, Fischer C, Grziwa B, Runz H, Nümann A, Shafqat N, Kavanagh KL, Hämmerling G, Wanders RJ, Shield JP, Wendel U, Stern D, Nawroth P, Hoffmann GF, Bartram CR, Arnold B, Bierhaus A, Oppermann U, Steinbeisser H, Zschocke J., EMBO Mol Med. February 1, 2010; 2 (2): 51-62.                        


Perturbation of Notch/Suppressor of Hairless pathway disturbs migration of primordial germ cells in Xenopus embryo., Morichika K, Kataoka K, Terayama K, Tazaki A, Kinoshita T, Watanabe K, Mochii M., Dev Growth Differ. February 1, 2010; 52 (2): 235-44.


A glycine receptor is involved in the organization of swimming movements in an invertebrate chordate., Nishino A, Okamura Y, Piscopo S, Brown ER., BMC Neurosci. January 19, 2010; 11 6.            


Identification and expression of ventrally associated leucine-zipper (VAL) in Xenopus embryo., Saito Y, Takahashi Y, Izutsu Y, Maeno M., Int J Dev Biol. January 1, 2010; 54 (1): 203-8.                


The role and regulation of GDF11 in Smad2 activation during tailbud formation in the Xenopus embryo., Ho DM, Yeo CY, Whitman M., Mech Dev. January 1, 2010; 127 (9-12): 485-95.                  


Downstream of FGF during mesoderm formation in Xenopus: the roles of Elk-1 and Egr-1., Nentwich O, Dingwell KS, Nordheim A, Smith JC., Dev Biol. December 15, 2009; 336 (2): 313-26.          


Functional dissection of XDppa2/4 structural domains in Xenopus development., Siegel D, Schuff M, Oswald F, Cao Y, Knöchel W., Mech Dev. December 1, 2009; 126 (11-12): 974-89.            


Retinoic acid regulates anterior-posterior patterning within the lateral plate mesoderm of Xenopus., Deimling SJ, Drysdale TA., Mech Dev. October 1, 2009; 126 (10): 913-23.                        


Coordinating the timing of cardiac precursor development during gastrulation: a new role for Notch signaling., Miazga CM, McLaughlin KA., Dev Biol. September 15, 2009; 333 (2): 285-96.            


Diversification of the expression patterns and developmental functions of the dishevelled gene family during chordate evolution., Gray RS, Bayly RD, Green SA, Agarwala S, Lowe CJ, Wallingford JB., Dev Dyn. August 1, 2009; 238 (8): 2044-57.            


Identification of a novel negative regulator of activin/nodal signaling in mesendodermal formation of Xenopus embryos., Cheong SM, Kim H, Han JK., J Biol Chem. June 19, 2009; 284 (25): 17052-60.                        


CDK9/cyclin complexes modulate endoderm induction by direct interaction with Mix.3/mixer., Zhu H, Doherty JR, Kuliyev E, Mead PE., Dev Dyn. June 1, 2009; 238 (6): 1346-57.      


The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx., Rodríguez-Seguel E, Alarcón P, Gómez-Skarmeta JL., Dev Biol. May 15, 2009; 329 (2): 258-68.                


Syndecan-1 regulates BMP signaling and dorso-ventral patterning of the ectoderm during early Xenopus development., Olivares GH, Carrasco H, Aroca F, Carvallo L, Segovia F, Larraín J., Dev Biol. May 15, 2009; 329 (2): 338-49.    


DeltaNp63 antagonizes p53 to regulate mesoderm induction in Xenopus laevis., Barton CE, Tahinci E, Barbieri CE, Johnson KN, Hanson AJ, Jernigan KK, Chen TW, Lee E, Pietenpol JA., Dev Biol. May 1, 2009; 329 (1): 130-9.            


FGF signalling during embryo development regulates cilia length in diverse epithelia., Neugebauer JM, Amack JD, Peterson AG, Bisgrove BW, Yost HJ., Nature. April 2, 2009; 458 (7238): 651-4.      


Zebrafish gbx1 refines the midbrain-hindbrain boundary border and mediates the Wnt8 posteriorization signal., Rhinn M, Lun K, Ahrendt R, Geffarth M, Brand M., Neural Dev. April 2, 2009; 4 12.              


Involvement of an inner nuclear membrane protein, Nemp1, in Xenopus neural development through an interaction with the chromatin protein BAF., Mamada H, Takahashi N, Taira M., Dev Biol. March 15, 2009; 327 (2): 497-507.            


The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo., Rozario T, Dzamba B, Weber GF, Davidson LA, DeSimone DW., Dev Biol. March 15, 2009; 327 (2): 386-98.  


The role of Xenopus Rx-L in photoreceptor cell determination., Wu HY, Perron M, Hollemann T., Dev Biol. March 15, 2009; 327 (2): 352-65.            


hnRNP I inhibits Notch signaling and regulates intestinal epithelial homeostasis in the zebrafish., Yang J, Chan CY, Jiang B, Yu X, Zhu GZ, Chen Y, Barnard J, Mei W., PLoS Genet. February 1, 2009; 5 (2): e1000363.            


Xenopus ADAM19 is involved in neural, neural crest and muscle development., Neuner R, Cousin H, McCusker C, Coyne M, Alfandari D, Alfandari D., Mech Dev. January 1, 2009; 126 (3-4): 240-55.                      


Cloning and expression analysis of the anterior parahox genes, Gsh1 and Gsh2 from Xenopus tropicalis., Illes JC, Winterbottom E, Isaacs HV., Dev Dyn. January 1, 2009; 238 (1): 194-203.                                


Loss of REEP4 causes paralysis of the Xenopus embryo., Argasinska J, Rana AA, Gilchrist MJ, Lachani K, Young A, Smith JC., Int J Dev Biol. January 1, 2009; 53 (1): 37-43.          


The Xenopus Bowline/Ripply family proteins negatively regulate the transcriptional activity of T-box transcription factors., Hitachi K, Danno H, Tazumi S, Aihara Y, Uchiyama H, Okabayashi K, Kondow A, Asashima M., Int J Dev Biol. January 1, 2009; 53 (4): 631-9.                    


Characterisation of the fibroblast growth factor dependent transcriptome in early development., Branney PA, Faas L, Steane SE, Pownall ME, Isaacs HV., PLoS One. January 1, 2009; 4 (3): e4951.            


Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation., Kot-Leibovich H, Fainsod A., Dis Model Mech. January 1, 2009; 2 (5-6): 295-305.    


Fgf8a induces neural crest indirectly through the activation of Wnt8 in the paraxial mesoderm., Hong CS, Park BY, Saint-Jeannet JP., Development. December 1, 2008; 135 (23): 3903-10.          


Wnt5a and Wnt11 interact in a maternal Dkk1-regulated fashion to activate both canonical and non-canonical signaling in Xenopus axis formation., Cha SW, Tadjuidje E, Tao Q, Tao Q, Wylie C, Heasman J., Development. November 1, 2008; 135 (22): 3719-29.        


The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development., Kazanskaya O, Ohkawara B, Heroult M, Wu W, Maltry N, Augustin HG, Niehrs C., Development. November 1, 2008; 135 (22): 3655-64.                


Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells., Morokuma J, Blackiston D, Adams DS, Seebohm G, Trimmer B, Levin M., Proc Natl Acad Sci U S A. October 28, 2008; 105 (43): 16608-13.                                  


Hairy2 functions through both DNA-binding and non DNA-binding mechanisms at the neural plate border in Xenopus., Nichane M, Ren X, Souopgui J, Bellefroid EJ., Dev Biol. October 15, 2008; 322 (2): 368-80.                        


Mix.1/2-dependent control of FGF availability during gastrulation is essential for pronephros development in Xenopus., Colas A, Cartry J, Buisson I, Umbhauer M, Smith JC, Riou JF., Dev Biol. August 15, 2008; 320 (2): 351-65.                  


Circadian genes are expressed during early development in Xenopus laevis., Curran KL, LaRue S, Bronson B, Solis J, Trow A, Sarver N, Zhu H., PLoS One. July 23, 2008; 3 (7): e2749.                                


A functional screen for genes involved in Xenopus pronephros development., Kyuno J, Massé K, Jones EA., Mech Dev. July 1, 2008; 125 (7): 571-86.                                                                                      


XHAPLN3 plays a key role in cardiogenesis by maintaining the hyaluronan matrix around heart anlage., Ito Y, Seno S, Nakamura H, Fukui A, Asashima M., Dev Biol. July 1, 2008; 319 (1): 34-45.                          


PACSIN2 regulates cell adhesion during gastrulation in Xenopus laevis., Cousin H, Desimone DW, Alfandari D, Alfandari D., Dev Biol. July 1, 2008; 319 (1): 86-99.                                


Upstream stimulatory factors, USF1 and USF2 are differentially expressed during Xenopus embryonic development., Fujimi TJ, Aruga J., Gene Expr Patterns. July 1, 2008; 8 (6): 376-381.                          


Pleiotropic effects in Eya3 knockout mice., Söker T, Dalke C, Puk O, Floss T, Becker L, Bolle I, Favor J, Hans W, Hölter SM, Horsch M, Kallnik M, Kling E, Moerth C, Schrewe A, Stigloher C, Topp S, Gailus-Durner V, Naton B, Beckers J, Fuchs H, Ivandic B, Klopstock T, Schulz H, Wolf E, Wurst W, Bally-Cuif L, de Angelis MH, Graw J., BMC Dev Biol. June 23, 2008; 8 118.                    


Gene expression in Pre-MBT embryos and activation of maternally-inherited program of apoptosis to be executed at around MBT as a fail-safe mechanism in Xenopus early embryogenesis., Shiokawa K, Aso M, Kondo T, Uchiyama H, Kuroyanagi S, Takai J, Takahashi S, Kajitani M, Kaito C, Sekimizu K, Takayama E, Igarashi K, Hara H., Gene Regul Syst Bio. May 29, 2008; 2 213-31.                        


Regulation of TGF-(beta) signalling by N-acetylgalactosaminyltransferase-like 1., Herr P, Korniychuk G, Yamamoto Y, Grubisic K, Oelgeschläger M., Development. May 1, 2008; 135 (10): 1813-22.                    


Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline., Christine KS, Conlon FL., Dev Cell. April 1, 2008; 14 (4): 616-23.                                

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???