Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4079) Expression Attributions Wiki
XB-ANAT-86

Papers associated with tail region (and myod1)

Limit to papers also referencing gene:
Show all tail region papers
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

MyoD expression in the forming somites is an early response to mesoderm induction in Xenopus embryos., Hopwood ND., EMBO J. November 1, 1989; 8 (11): 3409-17.


The Xenopus MyoD gene: an unlocalised maternal mRNA predates lineage-restricted expression in the early embryo., Harvey RP., Development. April 1, 1990; 108 (4): 669-80.


Expression of XMyoD protein in early Xenopus laevis embryos., Hopwood ND., Development. January 1, 1992; 114 (1): 31-8.      


Expression of the myogenic gene MRF4 during Xenopus development., Jennings CG., Dev Biol. May 1, 1992; 151 (1): 319-32.            


Induction of cardiac muscle differentiation in isolated animal pole explants of Xenopus laevis embryos., Logan M., Development. July 1, 1993; 118 (3): 865-75.              


The MyoD binding site is dispensable for cardiac actin gene expression in the somites of later stage Xenopus embryos., Su XL., FEBS Lett. November 29, 1993; 335 (1): 41-6.


A functional test for maternally inherited cadherin in Xenopus shows its importance in cell adhesion at the blastula stage., Heasman J., Development. January 1, 1994; 120 (1): 49-57.              


The RSRF/MEF2 protein SL1 regulates cardiac muscle-specific transcription of a myosin light-chain gene in Xenopus embryos., Chambers AE., Genes Dev. June 1, 1994; 8 (11): 1324-34.              


Control of somitic expression of tenascin in Xenopus embryos by myogenic factors and Brachyury., Umbhauer M., Dev Dyn. August 1, 1994; 200 (4): 269-77.


Overexpression of XMyoD or XMyf5 in Xenopus embryos induces the formation of enlarged myotomes through recruitment of cells of nonsomitic lineage., Ludolph DC., Dev Biol. November 1, 1994; 166 (1): 18-33.                              


XIdx, a dominant negative regulator of bHLH function in early Xenopus embryos., Wilson R., Mech Dev. February 1, 1995; 49 (3): 211-22.          


Cardiac myosin heavy chain expression during heart development in Xenopus laevis., Cox WG., Differentiation. April 1, 1995; 58 (4): 269-80.                


Localized BMP-4 mediates dorsal/ventral patterning in the early Xenopus embryo., Schmidt JE., Dev Biol. May 1, 1995; 169 (1): 37-50.              


The expression pattern of Xenopus Mox-2 implies a role in initial mesodermal differentiation., Candia AF., Mech Dev. July 1, 1995; 52 (1): 27-36.


The regulation of MyoD gene expression: conserved elements mediate expression in embryonic axial muscle., Asakura A., Dev Biol. October 1, 1995; 171 (2): 386-98.    


Drosophila short gastrulation induces an ectopic axis in Xenopus: evidence for conserved mechanisms of dorsal-ventral patterning., Schmidt J., Development. December 1, 1995; 121 (12): 4319-28.                


Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox., Schmidt JE., Development. June 1, 1996; 122 (6): 1711-21.                    


The Notch ligand, X-Delta-2, mediates segmentation of the paraxial mesoderm in Xenopus embryos., Jen WC., Development. March 1, 1997; 124 (6): 1169-78.                


Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer., Leyns L., Cell. March 21, 1997; 88 (6): 747-56.              


A role for Xenopus Gli-type zinc finger proteins in the early embryonic patterning of mesoderm and neuroectoderm., Marine JC., Mech Dev. May 1, 1997; 63 (2): 211-25.              


A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation., Horb ME., Development. May 1, 1997; 124 (9): 1689-98.                    


The role of cyclin-dependent kinase 5 and a novel regulatory subunit in regulating muscle differentiation and patterning., Philpott A., Genes Dev. June 1, 1997; 11 (11): 1409-21.                  


SCL specifies hematopoietic mesoderm in Xenopus embryos., Mead PE., Development. July 1, 1998; 125 (14): 2611-20.        


Temporal restriction of MyoD induction and autocatalysis during Xenopus mesoderm formation., Steinbach OC., Dev Biol. October 15, 1998; 202 (2): 280-92.            


The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation., Kim SH., Development. December 1, 1998; 125 (23): 4681-90.                      


Neuregulin induces the expression of mesodermal genes in the ectoderm of Xenopus laevis., Chung HG., Mol Cells. October 31, 1999; 9 (5): 497-503.


Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors., Kofron M., Development. December 1, 1999; 126 (24): 5759-70.


Xenopus kielin: A dorsalizing factor containing multiple chordin-type repeats secreted from the embryonic midline., Matsui M., Proc Natl Acad Sci U S A. May 9, 2000; 97 (10): 5291-6.            


Expression of the RNA recognition motif-containing protein SEB-4 during Xenopus embryonic development., Fetka I., Mech Dev. June 1, 2000; 94 (1-2): 283-6.  


The bHLH class protein pMesogenin1 can specify paraxial mesoderm phenotypes., Yoon JK., Dev Biol. June 15, 2000; 222 (2): 376-91.            


RGS proteins inhibit Xwnt-8 signaling in Xenopus embryonic development., Wu C., Development. July 1, 2000; 127 (13): 2773-84.    


FGF signaling restricts the primary blood islands to ventral mesoderm., Kumano G., Dev Biol. December 15, 2000; 228 (2): 304-14.            


Functional characterization and genetic mapping of alk8., Payne TL., Mech Dev. February 1, 2001; 100 (2): 275-89.          


Calcium signaling during convergent extension in Xenopus., Wallingford JB., Curr Biol. May 1, 2001; 11 (9): 652-61.              


A novel POZ/zinc finger protein, champignon, interferes with gastrulation movements in Xenopus., Goto T., Dev Dyn. May 1, 2001; 221 (1): 14-25.                


Goosecoid promotes head organizer activity by direct repression of Xwnt8 in Spemann's organizer., Yao J., Development. August 1, 2001; 128 (15): 2975-87.              


XCL-2 is a novel m-type calpain and disrupts morphogenetic movements during embryogenesis in Xenopus laevis., Cao Y., Dev Growth Differ. October 1, 2001; 43 (5): 563-71.              


Repression of XMyoD expression and myogenesis by Xhairy-1 in Xenopus early embryo., Umbhauer M., Mech Dev. November 1, 2001; 109 (1): 61-8.  


Hypaxial muscle migration during primary myogenesis in Xenopus laevis., Martin BL., Dev Biol. November 15, 2001; 239 (2): 270-80.            


Two myogenin-related genes are differentially expressed in Xenopus laevis myogenesis and differ in their ability to transactivate muscle structural genes., Charbonnier F., J Biol Chem. January 11, 2002; 277 (2): 1139-47.              


Xenopus marginal coil (Xmc), a novel FGF inducible cytosolic coiled-coil protein regulating gastrulation movements., Frazzetto G., Mech Dev. April 1, 2002; 113 (1): 3-14.            


Xenopus Cdc42 regulates convergent extension movements during gastrulation through Wnt/Ca2+ signaling pathway., Choi SC., Dev Biol. April 15, 2002; 244 (2): 342-57.                  


Hes6 regulates myogenic differentiation., Cossins J., Development. May 1, 2002; 129 (9): 2195-207.          


The planar cell polarity gene strabismus regulates convergence and extension and neural fold closure in Xenopus., Goto T., Dev Biol. July 1, 2002; 247 (1): 165-81.                        


Repression through a distal TCF-3 binding site restricts Xenopus myf-5 expression in gastrula mesoderm., Yang J., Mech Dev. July 1, 2002; 115 (1-2): 79-89.              


The latent-TGFbeta-binding-protein-1 (LTBP-1) is expressed in the organizer and regulates nodal and activin signaling., Altmann CR., Dev Biol. August 1, 2002; 248 (1): 118-27.                  


The roles of three signaling pathways in the formation and function of the Spemann Organizer., Xanthos JB., Development. September 1, 2002; 129 (17): 4027-43.                  


Redundant early and overlapping larval roles of Xsox17 subgroup genes in Xenopus endoderm development., Clements D., Mech Dev. March 1, 2003; 120 (3): 337-48.            


The prickle-related gene in vertebrates is essential for gastrulation cell movements., Takeuchi M., Curr Biol. April 15, 2003; 13 (8): 674-9.        


Role of glypican 4 in the regulation of convergent extension movements during gastrulation in Xenopus laevis., Ohkawara B., Development. May 1, 2003; 130 (10): 2129-38.                

???pagination.result.page??? 1 2 3 4 5 ???pagination.result.next???