Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4079) Expression Attributions Wiki
XB-ANAT-86

Papers associated with tail region (and foxd3)

Limit to papers also referencing gene:
Show all tail region papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A fork head related multigene family is transcribed in Xenopus laevis embryos., Lef J., Int J Dev Biol. February 1, 1996; 40 (1): 245-53.  


Regulated gene expression of hyaluronan synthases during Xenopus laevis development., Nardini M., Gene Expr Patterns. May 1, 2004; 4 (3): 303-8.        


Molecular anatomy of placode development in Xenopus laevis., Schlosser G., Dev Biol. July 15, 2004; 271 (2): 439-66.                          


Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development., Pohl BS., Gene. January 3, 2005; 344 21-32.      


Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction., Monsoro-Burq AH., Dev Cell. February 1, 2005; 8 (2): 167-78.            


Slug stability is dynamically regulated during neural crest development by the F-box protein Ppa., Vernon AE., Development. September 1, 2006; 133 (17): 3359-70.                


FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development., Steiner AB., Development. December 1, 2006; 133 (24): 4827-38.                    


Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways., Zhao H., Development. April 1, 2008; 135 (7): 1283-93.                            


Hairy2-Id3 interactions play an essential role in Xenopus neural crest progenitor specification., Nichane M., Dev Biol. October 15, 2008; 322 (2): 355-67.                          


A new role for the Endothelin-1/Endothelin-A receptor signaling during early neural crest specification., Bonano M., Dev Biol. November 1, 2008; 323 (1): 114-29.                          


Characterisation of the fibroblast growth factor dependent transcriptome in early development., Branney PA., PLoS One. January 1, 2009; 4 (3): e4951.            


Xhairy2 functions in Xenopus lens development by regulating p27(xic1) expression., Murato Y., Dev Dyn. September 1, 2009; 238 (9): 2179-92.              


B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo., Okuda Y., PLoS Genet. May 6, 2010; 6 (5): e1000936.                


Xenopus reduced folate carrier regulates neural crest development epigenetically., Li J., PLoS One. January 1, 2011; 6 (11): e27198.                            


SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos., Wu MY., PLoS Biol. February 15, 2011; 9 (2): e1000593.                              


Focal adhesion kinase protein regulates Wnt3a gene expression to control cell fate specification in the developing neural plate., Fonar Y., Mol Biol Cell. July 1, 2011; 22 (13): 2409-21.                  


Kazrin, and its binding partners ARVCF- and delta-catenin, are required for Xenopus laevis craniofacial development., Cho K., Dev Dyn. December 1, 2011; 240 (12): 2601-12.      


Plakophilin-3 is required for late embryonic amphibian development, exhibiting roles in ectodermal and neural tissues., Munoz WA., PLoS One. January 1, 2012; 7 (4): e34342.              


Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway., Takahashi C., Int J Dev Biol. January 1, 2012; 56 (5): 393-402.                  


The LIM adaptor protein LMO4 is an essential regulator of neural crest development., Ochoa SD., Dev Biol. January 15, 2012; 361 (2): 313-25.              


Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm., Pieper M., Development. March 1, 2012; 139 (6): 1175-87.                    


Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos., Pegoraro C., Wiley Interdiscip Rev Dev Biol. January 1, 2013; 2 (2): 247-59.      


Two different vestigial like 4 genes are differentially expressed during Xenopus laevis development., Barrionuevo MG., Int J Dev Biol. January 1, 2014; 58 (5): 369-77.            


Identification of Pax3 and Zic1 targets in the developing neural crest., Bae CJ., Dev Biol. February 15, 2014; 386 (2): 473-83.                  


Developmental expression and role of Kinesin Eg5 during Xenopus laevis embryogenesis., Fernández JP., Dev Dyn. April 1, 2014; 243 (4): 527-40.              


In vivo collective cell migration requires an LPAR2-dependent increase in tissue fluidity., Kuriyama S., J Cell Biol. July 7, 2014; 206 (1): 113-27.                                


Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm., Nordin K., Dev Cell. November 10, 2014; 31 (3): 374-382.                              


The Proto-oncogene Transcription Factor Ets1 Regulates Neural Crest Development through Histone Deacetylase 1 to Mediate Output of Bone Morphogenetic Protein Signaling., Wang C., J Biol Chem. September 4, 2015; 290 (36): 21925-38.                  


Specification of anteroposterior axis by combinatorial signaling during Xenopus development., Carron C., Wiley Interdiscip Rev Dev Biol. January 1, 2016; 5 (2): 150-68.            


Genes regulated by potassium channel tetramerization domain containing 15 (Kctd15) in the developing neural crest., Wong TC., Int J Dev Biol. January 1, 2016; 60 (4-6): 159-66.                      


Elongator Protein 3 (Elp3) stabilizes Snail1 and regulates neural crest migration in Xenopus., Yang X., Sci Rep. May 18, 2016; 6 26238.            


Musculocontractural Ehlers-Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin., Gouignard N., Dis Model Mech. June 1, 2016; 9 (6): 607-20.                                      


The positive transcriptional elongation factor (P-TEFb) is required for neural crest specification., Hatch VL., Dev Biol. August 15, 2016; 416 (2): 361-72.                                    


Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes., Riddiford N., Elife. August 31, 2016; 5                                                                         


Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis., Ding Y., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.                        


Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula., Ding Y., Dev Biol. June 15, 2017; 426 (2): 176-187.                                  


Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis., Watanabe M., Dev Biol. June 15, 2017; 426 (2): 301-324.                          


Dual control of pcdh8l/PCNS expression and function in Xenopus laevis neural crest cells by adam13/33 via the transcription factors tfap2α and arid3a., Khedgikar V., Elife. August 22, 2017; 6                                                             


PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation., Figueiredo AL., Development. November 15, 2017; 144 (22): 4183-4194.                                


Gap junction protein Connexin-43 is a direct transcriptional regulator of N-cadherin in vivo., Kotini M., Nat Commun. September 21, 2018; 9 (1): 3846.                    


The b-HLH transcription factor Hes3 participates in neural plate border formation by interfering with Wnt/β-catenin signaling., Hong CS., Dev Biol. October 1, 2018; 442 (1): 162-172.                


Gli2 is required for the induction and migration of Xenopus laevis neural crest., Cerrizuela S., Mech Dev. December 1, 2018; 154 219-239.                      


BAP1 regulates epigenetic switch from pluripotency to differentiation in developmental lineages giving rise to BAP1-mutant cancers., Kuznetsov JN., Sci Adv. September 18, 2019; 5 (9): eaax1738.        


Modeling Bainbridge-Ropers Syndrome in Xenopus laevis Embryos., Lichtig H., Front Physiol. January 1, 2020; 11 75.                    


Disrupted ER membrane protein complex-mediated topogenesis drives congenital neural crest defects., Marquez J., J Clin Invest. February 3, 2020; 130 (2): 813-826.                                


Heparan sulfate proteoglycans regulate BMP signalling during neural crest induction., Pegge J., Dev Biol. April 15, 2020; 460 (2): 108-114.        


Xvent-2 expression in regenerating Xenopus tails., Pshennikova ES., Stem Cell Investig. July 20, 2020; 7 13.  


TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis., Chen M., Elife. September 14, 2020; 9                                                                                           


Mcrs1 interacts with Six1 to influence early craniofacial and otic development., Neilson KM., Dev Biol. November 1, 2020; 467 (1-2): 39-50.                  


4-Octylphenol induces developmental abnormalities and interferes the differentiation of neural crest cells in Xenopus laevis embryos., Xu Y., Environ Pollut. April 1, 2021; 274 116560.  

???pagination.result.page??? 1 2 ???pagination.result.next???