Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4079) Expression Attributions Wiki
XB-ANAT-86

Papers associated with tail region (and dnai1)

Limit to papers also referencing gene:
Show all tail region papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Permitted and restricted steps of human kinetochore assembly in mitotic cell extracts., Tarasovetc EV., Mol Biol Cell. June 15, 2021; 32 (13): 1241-1255.              


RNA demethylation by FTO stabilizes the FOXJ1 mRNA for proper motile ciliogenesis., Kim H., Dev Cell. April 19, 2021; 56 (8): 1118-1130.e6.                                  


UXT chaperone prevents proteotoxicity by acting as an autophagy adaptor for p62-dependent aggrephagy., Yoon MJ., Nat Commun. March 29, 2021; 12 (1): 1955.                


Precisely controlled visual stimulation to study experience-dependent neural plasticity in Xenopus tadpoles., Hiramoto M., STAR Protoc. January 8, 2021; 2 (1): 100252.                


GSK3 Inhibits Macropinocytosis and Lysosomal Activity through the Wnt Destruction Complex Machinery., Albrecht LV., Cell Rep. July 28, 2020; 32 (4): 107973.                                      


Chromatin accessibility dynamics and single cell RNA-Seq reveal new regulators of regeneration in neural progenitors., Kakebeen AD., Elife. April 27, 2020; 9                             


Spatial analysis of RECK, MT1-MMP, and TIMP-2 proteins during early Xenopus laevis development., Willson JA., Gene Expr Patterns. December 1, 2019; 34 119066.              


Unique features of the grapevine VvK5.1 channel support novel functions for outward K+ channels in plants., Villette J., J Exp Bot. November 18, 2019; 70 (21): 6181-6193.                


Cdc42 regulates the cellular localization of Cdc42ep1 in controlling neural crest cell migration., Cohen S., J Mol Cell Biol. October 1, 2018; 10 (5): 376-387.                    


MMP14 Regulates Cranial Neural Crest Epithelial-to-Mesenchymal Transition and Migration., Garmon T., Dev Dyn. September 1, 2018; 247 (9): 1083-1092.            


A novel atypical sperm centriole is functional during human fertilization., Fishman EL., Nat Commun. June 7, 2018; 9 (1): 2210.            


Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells., Chernoff EAG., Front Cell Neurosci. January 1, 2018; 12 45.                          


Generation of BAC transgenic tadpoles enabling live imaging of motoneurons by using the urotensin II-related peptide (ust2b) gene as a driver., Bougerol M., PLoS One. February 6, 2015; 10 (2): e0117370.                            


The need of MMP-2 on the sperm surface for Xenopus fertilization: its role in a fast electrical block to polyspermy., Iwao Y., Mech Dev. November 1, 2014; 134 80-95.                  


Kinetochore-microtubule attachment throughout mitosis potentiated by the elongated stalk of the kinetochore kinesin CENP-E., Vitre B., Mol Biol Cell. August 1, 2014; 25 (15): 2272-81.          


Dissection of a Ciona regulatory element reveals complexity of cross-species enhancer activity., Chen WC., Dev Biol. June 15, 2014; 390 (2): 261-72.          


Nudel/NudE and Lis1 promote dynein and dynactin interaction in the context of spindle morphogenesis., Wang S., Mol Biol Cell. November 1, 2013; 24 (22): 3522-33.            


Light-activation of the Archaerhodopsin H(+)-pump reverses age-dependent loss of vertebrate regeneration: sparking system-level controls in vivo., Adams DS., Biol Open. March 15, 2013; 2 (3): 306-13.          


Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells., Gaete M., Neural Dev. April 26, 2012; 7 13.            


The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits LIS1 to dynein., Zyłkiewicz E., J Cell Biol. February 7, 2011; 192 (3): 433-45.            


The apicobasal polarity kinase aPKC functions as a nuclear determinant and regulates cell proliferation and fate during Xenopus primary neurogenesis., Sabherwal N., Development. August 1, 2009; 136 (16): 2767-77.                


FGF signalling during embryo development regulates cilia length in diverse epithelia., Neugebauer JM., Nature. April 2, 2009; 458 (7238): 651-4.      


Spinal cord is required for proper regeneration of the tail in Xenopus tadpoles., Taniguchi Y., Dev Growth Differ. February 1, 2008; 50 (2): 109-20.              


FoxI1e activates ectoderm formation and controls cell position in the Xenopus blastula., Mir A., Development. February 1, 2007; 134 (4): 779-88.                  


Regulation of gating and rundown of HCN hyperpolarization-activated channels by exogenous and endogenous PIP2., Pian P., J Gen Physiol. November 1, 2006; 128 (5): 593-604.                  


Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles., Kashina AS., Curr Biol. October 26, 2004; 14 (20): 1877-81.        


The XMAP215-family protein DdCP224 is required for cortical interactions of microtubules., Hestermann A., BMC Cell Biol. June 8, 2004; 5 24.              


Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites., Moss EG., Dev Biol. June 15, 2003; 258 (2): 432-42.        


Fluorescent labeling of endothelial cells allows in vivo, continuous characterization of the vascular development of Xenopus laevis., Levine AJ., Dev Biol. February 1, 2003; 254 (1): 50-67.                      


Interactions and regulation of molecular motors in Xenopus melanophores., Gross SP., J Cell Biol. March 4, 2002; 156 (5): 855-65.                  


Molecular targets of vertebrate segmentation: two mechanisms control segmental expression of Xenopus hairy2 during somite formation., Davis RL., Dev Cell. October 1, 2001; 1 (4): 553-65.    


foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain., Sullivan SA., Dev Biol. April 15, 2001; 232 (2): 439-57.            


The fate of cells in the tailbud of Xenopus laevis., Davis RL., Development. January 1, 2000; 127 (2): 255-67.              


Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein., Wittmann T., J Cell Biol. November 2, 1998; 143 (3): 673-85.                


Programmed cell death during Xenopus development: a spatio-temporal analysis., Hensey C., Dev Biol. November 1, 1998; 203 (1): 36-48.              


Xenopus Pax-6 and retinal development., Hirsch N., J Neurobiol. January 1, 1997; 32 (1): 45-61.            


Expression cloning of a Xenopus T-related gene (Xombi) involved in mesodermal patterning and blastopore lip formation., Lustig KD., Development. December 1, 1996; 122 (12): 4001-12.                  


A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly., Merdes A., Cell. November 1, 1996; 87 (3): 447-58.


A Xenopus nodal-related gene that acts in synergy with noggin to induce complete secondary axis and notochord formation., Lustig KD., Development. October 1, 1996; 122 (10): 3275-82.                


Spatial, temporal and hormonal regulation of programmed muscle cell death during metamorphosis of the frog Xenopus laevis., Nishikawa A., Differentiation. November 1, 1995; 59 (4): 207-14.


Hormonal regulation of programmed cell death during amphibian metamorphosis., Tata JR., Biochem Cell Biol. January 1, 1994; 72 (11-12): 581-8.

???pagination.result.page??? 1