Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3430) Expression Attributions Wiki
XB-ANAT-726

Papers associated with sensory system (and th)

Limit to papers also referencing gene:
Show all sensory system papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Distribution of tyrosine hydroxylase and dopamine immunoreactivities in the brain of the South African clawed frog Xenopus laevis., González A., Anat Embryol (Berl). February 1, 1993; 187 (2): 193-201.


Effects of localized application of retinoic acid on Xenopus laevis development., Drysdale TA., Dev Biol. April 1, 1994; 162 (2): 394-401.            


Ontogeny of catecholamine systems in the central nervous system of anuran amphibians: an immunohistochemical study with antibodies against tyrosine hydroxylase and dopamine., González A., J Comp Neurol. August 1, 1994; 346 (1): 63-79.


Development of catecholamine systems in the central nervous system of the newt Pleurodeles waltlii as revealed by tyrosine hydroxylase immunohistochemistry., González A., J Comp Neurol. September 11, 1995; 360 (1): 33-48.


Basal ganglia organization in amphibians: chemoarchitecture., Marín O., J Comp Neurol. March 16, 1998; 392 (3): 285-312.                      


Tyrosine hydroxylase-immunoreactive interneurons in the olfactory bulb of the frogs Rana pipiens and Xenopus laevis., Boyd JD., J Comp Neurol. December 2, 2002; 454 (1): 42-57.  


Differential distribution of Mel(1a) and Mel(1c) melatonin receptors in Xenopus laevis retina., Wiechmann AF., Exp Eye Res. January 1, 2003; 76 (1): 99-106.          


Localization of Mel1b melatonin receptor-like immunoreactivity in ocular tissues of Xenopus laevis., Wiechmann AF., Exp Eye Res. October 1, 2004; 79 (4): 585-94.                  


Timing the generation of distinct retinal cells by homeobox proteins., Decembrini S., PLoS Biol. September 1, 2006; 4 (9): e272.                          


Ptf1a triggers GABAergic neuronal cell fates in the retina., Dullin JP., BMC Dev Biol. May 31, 2007; 7 110.              


Anuran olfactory bulb organization: embryology, neurochemistry and hodology., Moreno N., Brain Res Bull. March 18, 2008; 75 (2-4): 241-5.


Generation of functional eyes from pluripotent cells., Viczian AS., PLoS Biol. August 1, 2009; 7 (8): e1000174.                                


Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians., Morona R., J Comp Neurol. August 10, 2009; 515 (5): 503-37.


Identification of the gene encoding alkylglycerol monooxygenase defines a third class of tetrahydrobiopterin-dependent enzymes., Watschinger K., Proc Natl Acad Sci U S A. August 3, 2010; 107 (31): 13672-7.


Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos., Milet C., Proc Natl Acad Sci U S A. April 2, 2013; 110 (14): 5528-33.                      


Angiogenesis in the intermediate lobe of the pituitary gland alters its structure and function., Tanaka S., Gen Comp Endocrinol. May 1, 2013; 185 10-8.        


Wiring the retinal circuits activated by light during early development., Bertolesi GE., Neural Dev. February 13, 2014; 9 3.              


Ascl1 as a novel player in the Ptf1a transcriptional network for GABAergic cell specification in the retina., Mazurier N., PLoS One. March 18, 2014; 9 (3): e92113.                        


Deep-brain photoreception links luminance detection to motor output in Xenopus frog tadpoles., Currie SP., Proc Natl Acad Sci U S A. May 24, 2016; 113 (21): 6053-8.                      

???pagination.result.page??? 1