Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3430) Expression Attributions Wiki
XB-ANAT-726

Papers associated with sensory system (and rpe)

Limit to papers also referencing gene:
Show all sensory system papers
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Olfactory and lens placode formation is controlled by the hedgehog-interacting protein (Xhip) in Xenopus., Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.                          


Frizzled 5 signaling governs the neural potential of progenitors in the developing Xenopus retina., Van Raay TJ., Neuron. April 7, 2005; 46 (1): 23-36.                        


Transdifferentiation of the retinal pigment epithelia to the neural retina by transfer of the Pax6 transcriptional factor., Azuma N., Hum Mol Genet. April 15, 2005; 14 (8): 1059-68.


Pigmented epithelium to retinal transdifferentiation and Pax6 expression in larval Xenopus laevis., Arresta E., J Exp Zool A Comp Exp Biol. November 1, 2005; 303 (11): 958-67.


Regulation of melanoblast and retinal pigment epithelium development by Xenopus laevis Mitf., Kumasaka M., Dev Dyn. November 1, 2005; 234 (3): 523-34.      


RPE65 surface epitopes, protein interactions, and expression in rod- and cone-dominant species., Hemati N., Mol Vis. December 21, 2005; 11 1151-65.


Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation., Van Campenhout C., Dev Biol. June 1, 2006; 294 (1): 203-19.                


Eye and neural defects associated with loss of GDF6., Hanel ML., BMC Dev Biol. June 6, 2006; 6 43.          


Cholesterol homeostasis in development: the role of Xenopus 7-dehydrocholesterol reductase (Xdhcr7) in neural development., Tadjuidje E., Dev Dyn. August 1, 2006; 235 (8): 2095-110.                          


Shroom2 (APXL) regulates melanosome biogenesis and localization in the retinal pigment epithelium., Fairbank PD., Development. October 1, 2006; 133 (20): 4109-18.                    


Xenopus cadherin-6 regulates growth and epithelial development of the retina., Ruan G., Mech Dev. December 1, 2006; 123 (12): 881-92.        


tBid mediated activation of the mitochondrial death pathway leads to genetic ablation of the lens in Xenopus laevis., Du Pasquier D., Genesis. January 1, 2007; 45 (1): 1-10.            


Expression of Bmp ligands and receptors in the developing Xenopus retina., Hocking JC., Int J Dev Biol. January 1, 2007; 51 (2): 161-5.        


Regeneration of the amphibian retina: role of tissue interaction and related signaling molecules on RPE transdifferentiation., Araki M., Dev Growth Differ. February 1, 2007; 49 (2): 109-20.                


Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina., Yoshii C., Dev Biol. March 1, 2007; 303 (1): 45-56.                    


Heme carrier protein 1 (HCP1) expression and functional analysis in the retina and retinal pigment epithelium., Sharma S., Exp Cell Res. April 1, 2007; 313 (6): 1251-9.


Nr2e3 and Nrl can reprogram retinal precursors to the rod fate in Xenopus retina., McIlvain VA., Dev Dyn. July 1, 2007; 236 (7): 1970-9.      


Expression patterns of chick Musashi-1 in the developing nervous system., Wilson JM., Gene Expr Patterns. August 1, 2007; 7 (7): 817-25.            


Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin., Tam BM., J Neurosci. August 22, 2007; 27 (34): 9043-53.              


Cloning and functional characterization of the proton-coupled electrogenic folate transporter and analysis of its expression in retinal cell types., Umapathy NS., Invest Ophthalmol Vis Sci. November 1, 2007; 48 (11): 5299-305.


Pleiotropic effects in Eya3 knockout mice., Söker T., BMC Dev Biol. June 23, 2008; 8 118.                    


Cloning and expression analysis of the anterior parahox genes, Gsh1 and Gsh2 from Xenopus tropicalis., Illes JC., Dev Dyn. January 1, 2009; 238 (1): 194-203.                                


Immunohistochemical analysis of Musashi-1 expression during retinal regeneration of adult newt., Kaneko J., Neurosci Lett. February 6, 2009; 450 (3): 252-7.


Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development., Lin AC., Neural Dev. March 2, 2009; 4 8.              


The role of Xenopus Rx-L in photoreceptor cell determination., Wu HY., Dev Biol. March 15, 2009; 327 (2): 352-65.            


Chemical genomics identifies compounds affecting Xenopus laevis pigment cell development., Tomlinson ML., Mol Biosyst. April 1, 2009; 5 (4): 376-84.


Developmental expression of retinoic acid receptors (RARs)., Dollé P., Nucl Recept Signal. May 12, 2009; 7 e006.            


Retinal regeneration in the Xenopus laevis tadpole: a new model system., Vergara MN., Mol Vis. May 18, 2009; 15 1000-13.          


Retina and lens regeneration in anuran amphibians., Filoni S., Semin Cell Dev Biol. July 1, 2009; 20 (5): 528-34.  


Generation of functional eyes from pluripotent cells., Viczian AS., PLoS Biol. August 1, 2009; 7 (8): e1000174.                                


A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina., Agathocleous M., Development. October 1, 2009; 136 (19): 3289-99.                          


The role of miR-124a in early development of the Xenopus eye., Qiu R., Mech Dev. October 1, 2009; 126 (10): 804-16.          


Fourier domain optical coherence tomography as a noninvasive means for in vivo detection of retinal degeneration in Xenopus laevis tadpoles., Lee DC., Invest Ophthalmol Vis Sci. February 1, 2010; 51 (2): 1066-70.


Regulation of photoreceptor gene expression by the retinal homeobox (Rx) gene product., Pan Y., Dev Biol. March 15, 2010; 339 (2): 494-506.              


FMR1/FXR1 and the miRNA pathway are required for eye and neural crest development., Gessert S., Dev Biol. May 1, 2010; 341 (1): 222-35.                                                              


Cellular retinol binding protein 1 modulates photoreceptor outer segment folding in the isolated eye., Wang X., Dev Neurobiol. August 1, 2010; 70 (9): 623-35.                


Retinal patterning by Pax6-dependent cell adhesion molecules., Rungger-Brändle E., Dev Neurobiol. September 15, 2010; 70 (11): 764-80.                


Sumoylation controls retinal progenitor proliferation by repressing cell cycle exit in Xenopus laevis., Terada K., Dev Biol. November 1, 2010; 347 (1): 180-94.                                                  


Xenopus sonic hedgehog guides retinal axons along the optic tract., Gordon L., Dev Dyn. November 1, 2010; 239 (11): 2921-32.      


Regulation of retinal homeobox gene transcription by cooperative activity among cis-elements., Martinez-de Luna RI., Gene. November 1, 2010; 467 (1-2): 13-24.                  


Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs., Borchers A., Genes (Basel). November 18, 2010; 1 (3): 413-26.      


Expression patterns of genes encoding small GTPases Ras-dva-1 and Ras-dva-2 in the Xenopus laevis tadpoles., Tereshina MB., Gene Expr Patterns. January 1, 2011; 11 (1-2): 156-61.      


The RNA-binding protein Xp54nrb isolated from a Ca²+-dependent screen is expressed in neural structures during Xenopus laevis development., Neant I., Int J Dev Biol. January 1, 2011; 55 (10-12): 923-31.        


Novel strategy for subretinal delivery in Xenopus., Gonzalez-Fernandez F., Mol Vis. March 23, 2011; 17 2956-69.                      


The Retinal Homeobox (Rx) gene is necessary for retinal regeneration., Martinez-De Luna RI., Dev Biol. May 1, 2011; 353 (1): 10-8.        


ET3/Ednrb2 signaling is critically involved in regulating melanophore migration in Xenopus., Kawasaki-Nishihara A., Dev Dyn. June 1, 2011; 240 (6): 1454-66.                            


Loss of the BMP antagonist, SMOC-1, causes Ophthalmo-acromelic (Waardenburg Anophthalmia) syndrome in humans and mice., Rainger J., PLoS Genet. July 1, 2011; 7 (7): e1002114.      


Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis., Pai VP., Development. January 1, 2012; 139 (2): 313-23.                


Histology of plastic embedded amphibian embryos and larvae., Kurth T., Genesis. March 1, 2012; 50 (3): 235-50.                                


Using myc genes to search for stem cells in the ciliary margin of the Xenopus retina., Xue XY., Dev Neurobiol. April 1, 2012; 72 (4): 475-90.                      

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???