Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (196) Expression Attributions Wiki
XB-ANAT-763

Papers associated with retinal pigmented epithelium

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A large scale screen for neural stem cell markers in Xenopus retina., Parain K., Dev Neurobiol. April 1, 2012; 72 (4): 491-506.                                                    


Simple, fast, tissue-specific bacterial artificial chromosome transgenesis in Xenopus., Fish MB., Genesis. March 1, 2012; 50 (3): 307-15.        


Dysmorphic photoreceptors in a P23H mutant rhodopsin model of retinitis pigmentosa are metabolically active and capable of regenerating to reverse retinal degeneration., Lee DC., J Neurosci. February 8, 2012; 32 (6): 2121-8.            


Generation of a genetically encoded marker of rod photoreceptor outer segment growth and renewal., Willoughby JJ., Biol Open. January 15, 2012; 1 (1): 30-6.            


pTransgenesis: a cross-species, modular transgenesis resource., Love NR., Development. December 1, 2011; 138 (24): 5451-8.              


Transport via SLC5A8 (SMCT1) is obligatory for 2-oxothiazolidine-4-carboxylate to enhance glutathione production in retinal pigment epithelial cells., Babu E., Invest Ophthalmol Vis Sci. July 29, 2011; 52 (8): 5749-57.


Loss of the BMP antagonist, SMOC-1, causes Ophthalmo-acromelic (Waardenburg Anophthalmia) syndrome in humans and mice., Rainger J., PLoS Genet. July 1, 2011; 7 (7): e1002114.      


The Retinal Homeobox (Rx) gene is necessary for retinal regeneration., Martinez-De Luna RI., Dev Biol. May 1, 2011; 353 (1): 10-8.        


Novel strategy for subretinal delivery in Xenopus., Gonzalez-Fernandez F., Mol Vis. March 23, 2011; 17 2956-69.                      


The RNA-binding protein Xp54nrb isolated from a Ca²+-dependent screen is expressed in neural structures during Xenopus laevis development., Neant I., Int J Dev Biol. January 1, 2011; 55 (10-12): 923-31.        


Differential contribution of rod and cone circadian clocks in driving retinal melatonin rhythms in Xenopus., Hayasaka N., PLoS One. December 17, 2010; 5 (12): e15599.          


Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs., Borchers A., Genes (Basel). November 18, 2010; 1 (3): 413-26.      


Cep152 interacts with Plk4 and is required for centriole duplication., Hatch EM., J Cell Biol. November 15, 2010; 191 (4): 721-9.          


The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis., Perry KJ., Dev Dyn. November 1, 2010; 239 (11): 3024-37.                


Cellular retinol binding protein 1 modulates photoreceptor outer segment folding in the isolated eye., Wang X., Dev Neurobiol. August 1, 2010; 70 (9): 623-35.                


Functional analysis of hemichannels and gap-junctional channels formed by connexins 43 and 46., Hoang QV., Mol Vis. July 15, 2010; 16 1343-52.              


Diclofenac-induced stimulation of SMCT1 (SLC5A8) in a heterologous expression system: a RPE specific phenomenon., Ananth S., Biochem Biophys Res Commun. March 26, 2010; 394 (1): 75-80.


Regulation of photoreceptor gene expression by the retinal homeobox (Rx) gene product., Pan Y., Dev Biol. March 15, 2010; 339 (2): 494-506.              


Fourier domain optical coherence tomography as a noninvasive means for in vivo detection of retinal degeneration in Xenopus laevis tadpoles., Lee DC., Invest Ophthalmol Vis Sci. February 1, 2010; 51 (2): 1066-70.


Complete reconstruction of the retinal laminar structure from a cultured retinal pigment epithelium is triggered by altered tissue interaction and promoted by overlaid extracellular matrices., Kuriyama F., Dev Neurobiol. December 1, 2009; 69 (14): 950-8.          


The role of miR-124a in early development of the Xenopus eye., Qiu R., Mech Dev. October 1, 2009; 126 (10): 804-16.          


Retina and lens regeneration in anuran amphibians., Filoni S., Semin Cell Dev Biol. July 1, 2009; 20 (5): 528-34.  


Retinal regeneration in the Xenopus laevis tadpole: a new model system., Vergara MN., Mol Vis. May 18, 2009; 15 1000-13.          


Developmental expression of retinoic acid receptors (RARs)., Dollé P., Nucl Recept Signal. May 12, 2009; 7 e006.            


Chemical genomics identifies compounds affecting Xenopus laevis pigment cell development., Tomlinson ML., Mol Biosyst. April 1, 2009; 5 (4): 376-84.


Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development., Lin AC., Neural Dev. March 2, 2009; 4 8.              


Proteomic analysis of the retina: removal of RPE alters outer segment assembly and retinal protein expression., Wang X., Glia. March 1, 2009; 57 (4): 380-92.


Immunohistochemical analysis of Musashi-1 expression during retinal regeneration of adult newt., Kaneko J., Neurosci Lett. February 6, 2009; 450 (3): 252-7.


FGF receptor dependent regulation of Lhx9 expression in the developing nervous system., Atkinson-Leadbeater K., Dev Dyn. February 1, 2009; 238 (2): 367-75.          


xArx2: an aristaless homolog that regulates brain regionalization during development in Xenopus laevis., Wolanski M., Genesis. January 1, 2009; 47 (1): 19-31.              


Developmental expression and regulation of the chemokine CXCL14 in Xenopus., Park BY., Int J Dev Biol. January 1, 2009; 53 (4): 535-40.                    


Duplication and divergence of zebrafish CRALBP genes uncovers novel role for RPE- and Muller-CRALBP in cone vision., Collery R., Invest Ophthalmol Vis Sci. September 1, 2008; 49 (9): 3812-20.


Pleiotropic effects in Eya3 knockout mice., Söker T., BMC Dev Biol. June 23, 2008; 8 118.                    


Psf2 plays important roles in normal eye development in Xenopus laevis., Walter BE., Mol Vis. May 19, 2008; 14 906-21.                  


Modulation of the Kir7.1 potassium channel by extracellular and intracellular pH., Hughes BA., Am J Physiol Cell Physiol. February 1, 2008; 294 (2): C423-31.


Functional expression, targeting and Ca2+ signaling of a mouse melanopsin-eYFP fusion protein in a retinal pigment epithelium cell line., Giesbers ME., Photochem Photobiol. January 1, 2008; 84 (4): 990-5.


Taurine suppresses the spread of cell death in electrically coupled RPE cells., Udawatte C., Mol Vis. January 1, 2008; 14 1940-50.          


Purification of the full-length Xenopus interphotoreceptor retinoid binding protein and growth of diffraction-quality crystals., Ghosh D., Mol Vis. December 13, 2007; 13 2275-81.        


Control of kidney, eye and limb expression of Bmp7 by an enhancer element highly conserved between species., Adams D., Dev Biol. November 15, 2007; 311 (2): 679-90.  


Cloning and functional characterization of the proton-coupled electrogenic folate transporter and analysis of its expression in retinal cell types., Umapathy NS., Invest Ophthalmol Vis Sci. November 1, 2007; 48 (11): 5299-305.


Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin., Tam BM., J Neurosci. August 22, 2007; 27 (34): 9043-53.              


Left-sided embryonic expression of the BCL-6 corepressor, BCOR, is required for vertebrate laterality determination., Hilton EN., Hum Mol Genet. July 15, 2007; 16 (14): 1773-82.              


Heme carrier protein 1 (HCP1) expression and functional analysis in the retina and retinal pigment epithelium., Sharma S., Exp Cell Res. April 1, 2007; 313 (6): 1251-9.


Multiple functions of Cerberus cooperate to induce heart downstream of Nodal., Foley AC., Dev Biol. March 1, 2007; 303 (1): 57-65.        


Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina., Yoshii C., Dev Biol. March 1, 2007; 303 (1): 45-56.                    


Regeneration of the amphibian retina: role of tissue interaction and related signaling molecules on RPE transdifferentiation., Araki M., Dev Growth Differ. February 1, 2007; 49 (2): 109-20.                


tBid mediated activation of the mitochondrial death pathway leads to genetic ablation of the lens in Xenopus laevis., Du Pasquier D., Genesis. January 1, 2007; 45 (1): 1-10.            


Expression of Bmp ligands and receptors in the developing Xenopus retina., Hocking JC., Int J Dev Biol. January 1, 2007; 51 (2): 161-5.        


Xenopus cadherin-6 regulates growth and epithelial development of the retina., Ruan G., Mech Dev. December 1, 2006; 123 (12): 881-92.        


Shroom2 (APXL) regulates melanosome biogenesis and localization in the retinal pigment epithelium., Fairbank PD., Development. October 1, 2006; 133 (20): 4109-18.                    

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 ???pagination.result.next???