Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2148) Expression Attributions Wiki
XB-ANAT-1602

Papers associated with regenerating tail (and hcn2)

Limit to papers also referencing gene:
Show all regenerating tail papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

An N-terminal deletion variant of HCN1 in the epileptic WAG/Rij strain modulates HCN current densities., Wemhöner K., Front Mol Neurosci. November 3, 2015; 8 63.          


HCN2 channels: a permanent open state and conductance changes., Pittoors F., J Membr Biol. February 1, 2015; 248 (1): 67-81.


cAMP control of HCN2 channel Mg2+ block reveals loose coupling between the cyclic nucleotide-gating ring and the pore., Lyashchenko AK., PLoS One. July 1, 2014; 9 (7): e101236.                    


Binding of the auxiliary subunit TRIP8b to HCN channels shifts the mode of action of cAMP., Hu L., J Gen Physiol. December 1, 2013; 142 (6): 599-612.                  


Flavonoid regulation of EAG1 channels., Carlson AE., J Gen Physiol. March 1, 2013; 141 (3): 347-58.                  


Inner activation gate in S6 contributes to the state-dependent binding of cAMP in full-length HCN2 channel., Wu S., J Gen Physiol. July 1, 2012; 140 (1): 29-39.            


Asymmetric divergence in structure and function of HCN channel duplicates in Ciona intestinalis., Jackson HA., PLoS One. January 1, 2012; 7 (11): e47590.                


Intracellular Mg2+ is a voltage-dependent pore blocker of HCN channels., Vemana S., Am J Physiol Cell Physiol. August 1, 2008; 295 (2): C557-65.


Ion binding in the open HCN pacemaker channel pore: fast mechanisms to shape "slow" channels., Lyashchenko AK., J Gen Physiol. March 1, 2008; 131 (3): 227-43.                  


Voltage sensor movement and cAMP binding allosterically regulate an inherently voltage-independent closed-open transition in HCN channels., Chen S., J Gen Physiol. February 1, 2007; 129 (2): 175-88.                


Regulation of gating and rundown of HCN hyperpolarization-activated channels by exogenous and endogenous PIP2., Pian P., J Gen Physiol. November 1, 2006; 128 (5): 593-604.                  


Mode shifts in the voltage gating of the mouse and human HCN2 and HCN4 channels., Elinder F., J Physiol. September 1, 2006; 575 (Pt 2): 417-31.


Salt bridges and gating in the COOH-terminal region of HCN2 and CNGA1 channels., Craven KB., J Gen Physiol. December 1, 2004; 124 (6): 663-77.                      


KCNE2 modulates current amplitudes and activation kinetics of HCN4: influence of KCNE family members on HCN4 currents., Decher N., Pflugers Arch. September 1, 2003; 446 (6): 633-40.


Regulation of hyperpolarization-activated HCN channel gating and cAMP modulation due to interactions of COOH terminus and core transmembrane regions., Wang J., J Gen Physiol. September 1, 2001; 118 (3): 237-50.              


Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide., Chen S., J Gen Physiol. May 1, 2001; 117 (5): 491-504.                  

???pagination.result.page??? 1