Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2148) Expression Attributions Wiki
XB-ANAT-1602

Papers associated with regenerating tail (and dnai1)

Limit to papers also referencing gene:
Show all regenerating tail papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Generation of BAC transgenic tadpoles enabling live imaging of motoneurons by using the urotensin II-related peptide (ust2b) gene as a driver., Bougerol M., PLoS One. February 6, 2015; 10 (2): e0117370.                            


The need of MMP-2 on the sperm surface for Xenopus fertilization: its role in a fast electrical block to polyspermy., Iwao Y., Mech Dev. November 1, 2014; 134 80-95.                  


Kinetochore-microtubule attachment throughout mitosis potentiated by the elongated stalk of the kinetochore kinesin CENP-E., Vitre B., Mol Biol Cell. August 1, 2014; 25 (15): 2272-81.          


Dissection of a Ciona regulatory element reveals complexity of cross-species enhancer activity., Chen WC., Dev Biol. June 15, 2014; 390 (2): 261-72.          


Nudel/NudE and Lis1 promote dynein and dynactin interaction in the context of spindle morphogenesis., Wang S., Mol Biol Cell. November 1, 2013; 24 (22): 3522-33.            


Light-activation of the Archaerhodopsin H(+)-pump reverses age-dependent loss of vertebrate regeneration: sparking system-level controls in vivo., Adams DS., Biol Open. March 15, 2013; 2 (3): 306-13.          


Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells., Gaete M., Neural Dev. April 26, 2012; 7 13.            


The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits LIS1 to dynein., Zyłkiewicz E., J Cell Biol. February 7, 2011; 192 (3): 433-45.            


Spinal cord is required for proper regeneration of the tail in Xenopus tadpoles., Taniguchi Y., Dev Growth Differ. February 1, 2008; 50 (2): 109-20.              


Regulation of gating and rundown of HCN hyperpolarization-activated channels by exogenous and endogenous PIP2., Pian P., J Gen Physiol. November 1, 2006; 128 (5): 593-604.                  


Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles., Kashina AS., Curr Biol. October 26, 2004; 14 (20): 1877-81.        


The XMAP215-family protein DdCP224 is required for cortical interactions of microtubules., Hestermann A., BMC Cell Biol. June 8, 2004; 5 24.              


Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites., Moss EG., Dev Biol. June 15, 2003; 258 (2): 432-42.        


Fluorescent labeling of endothelial cells allows in vivo, continuous characterization of the vascular development of Xenopus laevis., Levine AJ., Dev Biol. February 1, 2003; 254 (1): 50-67.                      


Interactions and regulation of molecular motors in Xenopus melanophores., Gross SP., J Cell Biol. March 4, 2002; 156 (5): 855-65.                  


foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain., Sullivan SA., Dev Biol. April 15, 2001; 232 (2): 439-57.            


The fate of cells in the tailbud of Xenopus laevis., Davis RL., Development. January 1, 2000; 127 (2): 255-67.              


Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein., Wittmann T., J Cell Biol. November 2, 1998; 143 (3): 673-85.                


Programmed cell death during Xenopus development: a spatio-temporal analysis., Hensey C., Dev Biol. November 1, 1998; 203 (1): 36-48.              


A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly., Merdes A., Cell. November 1, 1996; 87 (3): 447-58.


Spatial, temporal and hormonal regulation of programmed muscle cell death during metamorphosis of the frog Xenopus laevis., Nishikawa A., Differentiation. November 1, 1995; 59 (4): 207-14.


Hormonal regulation of programmed cell death during amphibian metamorphosis., Tata JR., Biochem Cell Biol. January 1, 1994; 72 (11-12): 581-8.

???pagination.result.page??? 1