Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2238) Expression Attributions Wiki
XB-ANAT-3835

Papers associated with posterior foregut (and ins)

Limit to papers also referencing gene:
Show all posterior foregut papers
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Comparative peptidomics of the endocrine pancreas: islet hormones from the clawed frog Xenopus laevis and the red-bellied newt Cynops pyrrhogaster., Conlon JM., J Endocrinol. December 1, 2002; 175 (3): 769-77.


Expression of amylase and other pancreatic genes in Xenopus., Horb ME., Mech Dev. May 1, 2002; 113 (2): 153-7.      


Gene expression for a novel protein RGPR-p117 in various species: the stimulation by intracellular signaling factors., Misawa H., J Cell Biochem. January 1, 2002; 87 (2): 188-93.


Open state destabilization by ATP occupancy is mechanism speeding burst exit underlying KATP channel inhibition by ATP., Li L., J Gen Physiol. January 1, 2002; 119 (1): 105-16.                    


The small muscle-specific protein Csl modifies cell shape and promotes myocyte fusion in an insulin-like growth factor 1-dependent manner., Palmer S., J Cell Biol. May 28, 2001; 153 (5): 985-98.                    


Evaluation of insulin permeability and effects of absorption enhancers on its permeability by an in vitro pulmonary epithelial system using Xenopus pulmonary membrane., Yamamoto A., Biol Pharm Bull. April 1, 2001; 24 (4): 385-9.


Effects of the serine/threonine kinase SGK1 on the epithelial Na(+) channel (ENaC) and CFTR: implications for cystic fibrosis., Wagner CA., Cell Physiol Biochem. January 1, 2001; 11 (4): 209-18.


Downregulation of Hedgehog signaling is required for organogenesis of the small intestine in Xenopus., Zhang J., Dev Biol. January 1, 2001; 229 (1): 188-202.                  


In vitro pancreas formation from Xenopus ectoderm treated with activin and retinoic acid., Moriya N., Dev Growth Differ. December 1, 2000; 42 (6): 593-602.


Characterization of insulin and atypically processed proglucagon-derived peptides from the surinam toad Pipa pipa (Anura:Pipidae)., Matutte B., Peptides. September 1, 2000; 21 (9): 1355-60.


Development of the pancreas in Xenopus laevis., Kelly OG., Dev Dyn. August 1, 2000; 218 (4): 615-27.                  


In vitro organogenesis of pancreas in Xenopus laevis dorsal lips treated with retinoic acid., Moriya N., Dev Growth Differ. April 1, 2000; 42 (2): 175-85.      


neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas., Gradwohl G., Proc Natl Acad Sci U S A. February 15, 2000; 97 (4): 1607-11.


Cloning of cDNA and the gene encoding human hepatocyte nuclear factor (HNF)-3 beta and mutation screening in Japanese subjects with maturity-onset diabetes of the young., Yamada S., Diabetologia. January 1, 2000; 43 (1): 121-4.


Adrenomedullin in nonmammalian vertebrate pancreas: an immunocytochemical study., López J., Gen Comp Endocrinol. September 1, 1999; 115 (3): 309-22.          


Insulin and proglucagon-derived peptides from the horned frog, Ceratophrys ornata (Anura:Leptodactylidae)., White AM., Gen Comp Endocrinol. July 1, 1999; 115 (1): 143-54.


Endocrine pancreatic cells from Xenopus laevis: light and electron microscopic studies., Lozano MT., Gen Comp Endocrinol. May 1, 1999; 114 (2): 191-205.


Synthesis and differentially regulated processing of proinsulin in developing chick pancreas, liver and neuroretina., Alarcón C., FEBS Lett. October 9, 1998; 436 (3): 361-6.


Gene and cDNA structures of flounder insulin-like growth factor-I (IGF-I): multiple mRNA species encode a single short mature IGF-I., Tanaka M., DNA Cell Biol. October 1, 1998; 17 (10): 859-68.


An immunohistochemical and morphometric analysis of insulin, insulin-like growth factor I, glucagon, somatostatin, and PP in the development of the gastro-entero-pancreatic system of Xenopus laevis., Maake C., Gen Comp Endocrinol. May 1, 1998; 110 (2): 182-95.                


Organization of the human glucokinase regulator gene GCKR., Hayward BE., Genomics. April 1, 1998; 49 (1): 137-42.


Primary structure and functional expression of a novel non-selective cation channel., Suzuki M., Biochem Biophys Res Commun. January 6, 1998; 242 (1): 191-6.


The Xenopus proglucagon gene encodes novel GLP-1-like peptides with insulinotropic properties., Irwin DM., Proc Natl Acad Sci U S A. July 22, 1997; 94 (15): 7915-20.


Functional characterization of the transactivation properties of the PDX-1 homeodomain protein., Peshavaria M., Mol Cell Biol. July 1, 1997; 17 (7): 3987-96.


PACAP/VIP receptors in pancreatic beta-cells: their roles in insulin secretion., Inagaki N., Ann N Y Acad Sci. December 26, 1996; 805 44-51; discussion 52-3.


Insulin-like growth factor I receptor messenger expression during oogenesis in Xenopus laevis., Groigno L., Endocrinology. September 1, 1996; 137 (9): 3856-63.


TGF-beta signals and a pattern in Xenopus laevis endodermal development., Henry GL., Development. March 1, 1996; 122 (3): 1007-15.          


Characterization of an insulin from the three-toed amphiuma (Amphibia: Urodela) with an N-terminally extended A-chain and high receptor-binding affinity., Conlon JM., Biochem J. January 1, 1996; 313 ( Pt 1) 283-7.


Immunohistochemical localization of insulin-like growth factor I and II in the endocrine pancreas of birds, reptiles, and amphibia., Reinecke M., Gen Comp Endocrinol. December 1, 1995; 100 (3): 385-96.


Pancreatic islet cells express a family of inwardly rectifying K+ channel subunits which interact to form G-protein-activated channels., Ferrer J., J Biol Chem. November 3, 1995; 270 (44): 26086-91.


Insulin receptors in Xenopus laevis liver and forelimb regenerates and the effects of local insulin deprivation on regeneration., Cowan BJ., J Exp Zool. October 1, 1995; 273 (2): 130-41.


Autonomous endodermal determination in Xenopus: regulation of expression of the pancreatic gene XlHbox 8., Gamer LW., Dev Biol. September 1, 1995; 171 (1): 240-51.                


Determination of the genomic structures of two nonallelic preproinsulin genes in Xenopus laevis using the polymerase chain reaction., Shuldiner AR., Gen Comp Endocrinol. February 1, 1995; 97 (2): 220-30.


Expression of murine STF-1, a putative insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny., Guz Y., Development. January 1, 1995; 121 (1): 11-8.


The two nonallelic insulin-like growth factor-I genes in Xenopus laevis are differentially regulated during development., Perfetti R., Endocrinology. November 1, 1994; 135 (5): 2037-44.


The two nonallelic Xenopus insulin genes are expressed coordinately in the adult pancreas., Celi FS., Gen Comp Endocrinol. August 1, 1994; 95 (2): 169-77.


XIHbox 8, an endoderm-specific Xenopus homeodomain protein, is closely related to a mammalian insulin gene transcription factor., Peshavaria M., Mol Endocrinol. June 1, 1994; 8 (6): 806-16.


Xenopus laevis oocytes, eggs and tadpoles contain immunoactive insulin., de Pablo F., J Endocrinol. April 1, 1994; 141 (1): 123-9.


Cloning and functional characterization of a third pituitary adenylate cyclase-activating polypeptide receptor subtype expressed in insulin-secreting cells., Inagaki N., Proc Natl Acad Sci U S A. March 29, 1994; 91 (7): 2679-83.


A highly conserved insulin-like growth factor-binding protein (IGFBP-5) is expressed during myoblast differentiation., James PL., J Biol Chem. October 25, 1993; 268 (30): 22305-12.


Analysis of the structural requirements of sugar binding to the liver, brain and insulin-responsive glucose transporters expressed in oocytes., Colville CA., Biochem J. September 15, 1993; 294 ( Pt 3) 753-60.


Species and tissue distribution of the regulatory protein of glucokinase., Vandercammen A., Biochem J. September 1, 1993; 294 ( Pt 2) 551-6.


Dephosphorylation of tyrosine phosphorylated synthetic peptides by rat liver phosphotyrosine protein phosphatase isoenzymes., Stefani M., FEBS Lett. July 12, 1993; 326 (1-3): 131-4.


Differential targeting of glucose transporter isoforms heterologously expressed in Xenopus oocytes., Thomas HM., Biochem J. March 15, 1993; 290 ( Pt 3) 707-15.


Cleavage specificity and inhibition profile of proteasome isolated from the cytosol of Xenopus oocyte., Takahashi T., J Biochem. February 1, 1993; 113 (2): 225-8.


Sequential activation of MAP kinase activator, MAP kinases, and S6 peptide kinase in intact rat liver following insulin injection., Tobe K., J Biol Chem. October 15, 1992; 267 (29): 21089-97.


Insulin receptors on Xenopus laevis oocytes: effects of injection of ob/ob mouse liver mRNA., Diss DA., J Cell Sci. September 1, 1991; 100 ( Pt 1) 167-71.


Two nonallelic insulin genes in Xenopus laevis are expressed differentially during neurulation in prepancreatic embryos., Shuldiner AR., Proc Natl Acad Sci U S A. September 1, 1991; 88 (17): 7679-83.


Purification and characterisation of the insulin-stimulated protein kinase from rabbit skeletal muscle; close similarity to S6 kinase II., Lavoinne A., Eur J Biochem. August 1, 1991; 199 (3): 723-8.


Insulin and insulin-like-growth-factor-I (IGF-I) receptors in Xenopus laevis oocytes. Comparison with insulin receptors from liver and muscle., Hainaut P., Biochem J. February 1, 1991; 273 ( Pt 3) 673-8.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???