Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (21437) Expression Attributions Wiki
XB-ANAT-3710

Papers associated with multicellular anatomical structure (and eef1a1)

Limit to papers also referencing gene:
Show all multicellular anatomical structure papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Development of a heat-stable alkaline phosphatase reporter system for cis-regulatory analysis and its application to 3D digital imaging of Xenopus embryonic tissues., Sakagami K., Dev Growth Differ. April 1, 2024; 66 (3): 256-265.   


Evolutionary origin of Hoxc13-dependent skin appendages in amphibians., Carron M., Nat Commun. March 18, 2024; 15 (1): 2328.   


Paracrine regulation of neural crest EMT by placodal MMP28., Gouignard N., PLoS Biol. August 1, 2023; 21 (8): e3002261.   


Transcriptome analysis of the response to thyroid hormone in Xenopus neural stem and progenitor cells., Cordero-Véliz C., Dev Dyn. February 1, 2023; 252 (2): 294-304.   


Metamorphic gene regulation programs in Xenopus tropicalis tadpole brain., Raj S., PLoS One. January 1, 2023; 18 (6): e0287858.   


Xenopus Dusp6 modulates FGF signaling to precisely pattern pre-placodal ectoderm., Tsukano K., Dev Biol. August 1, 2022; 488 81-90.   


Cornifelin expression during Xenopus laevis metamorphosis and in response to spinal cord injury., Torruella-Gonzalez S., Gene Expr Patterns. March 1, 2022; 43 119234.   


Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos., Umair Z., Mol Cells. October 31, 2021; 44 (10): 723-735.   


Tissue disaggregation and isolation of specific cell types from transgenic Xenopus appendages for transcriptional analysis by FACS., Kakebeen AD., Dev Dyn. September 1, 2021; 250 (9): 1381-1392.


Rspo2 inhibits TCF3 phosphorylation to antagonize Wnt signaling during vertebrate anteroposterior axis specification., Reis AH., Sci Rep. June 28, 2021; 11 (1): 13433.   


The Secreted Protein Disulfide Isomerase Ag1 Lost by Ancestors of Poorly Regenerating Vertebrates Is Required for Xenopus laevis Tail Regeneration., Ivanova AS., Front Cell Dev Biol. January 1, 2021; 9 738940.   


Rspo2 antagonizes FGF signaling during vertebrate mesoderm formation and patterning., Reis AH., Development. May 27, 2020; 147 (10):   


Endodermal Maternal Transcription Factors Establish Super-Enhancers during Zygotic Genome Activation., Paraiso KD., Cell Rep. June 4, 2019; 27 (10): 2962-2977.e5.   


Reference Gene Validation for Quantitative Real-time PCR Studies in Amphibian Kidney-derived A6 Epithelial Cells., Verbrugghe E., Altern Lab Anim. May 1, 2019; 47 (2): 63-70.


Fam46a regulates BMP-dependent pre-placodal ectoderm differentiation in Xenopus., Watanabe T., Development. October 26, 2018; 145 (20):   


Pitx1 regulates cement gland development in Xenopus laevis through activation of transcriptional targets and inhibition of BMP signaling., Jin Y., Dev Biol. May 1, 2018; 437 (1): 41-49.   


A transgenic reporter under control of an es1 promoter/enhancer marks wound epidermis and apical epithelial cap during tail regeneration in Xenopus laevis tadpole., Sato K., Dev Biol. January 15, 2018; 433 (2): 404-415.   


Hyperinnervation improves Xenopus laevis limb regeneration., Mitogawa K., Dev Biol. January 15, 2018; 433 (2): 276-286.   


Reference gene identification and validation for quantitative real-time PCR studies in developing Xenopus laevis., Mughal BB., Sci Rep. January 11, 2018; 8 (1): 496.   


Dicer inactivation stimulates limb regeneration ability in Xenopus laevis., Zhang M., Wound Repair Regen. January 1, 2018; 26 (1): 46-53.   


Reactivation of larval keratin gene (krt62.L) in blastema epithelium during Xenopus froglet limb regeneration., Satoh A., Dev Biol. December 15, 2017; 432 (2): 265-272.   


PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation., Figueiredo AL., Development. November 15, 2017; 144 (22): 4183-4194.   


A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates., Plouhinec JL., PLoS Biol. October 19, 2017; 15 (10): e2004045.   


KDM3A-mediated demethylation of histone H3 lysine 9 facilitates the chromatin binding of Neurog2 during neurogenesis., Lin H., Development. October 15, 2017; 144 (20): 3674-3685.   


RARβ2 is required for vertebrate somitogenesis., Janesick A., Development. June 1, 2017; 144 (11): 1997-2008.   


FoxD1 protein interacts with Wnt and BMP signaling to differentially pattern mesoderm and neural tissue., Polevoy H., Int J Dev Biol. January 1, 2017; 61 (3-4-5): 293-302.   


FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development., Reid CD., Dev Biol. June 1, 2016; 414 (1): 34-44.   


Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development., Owens ND., Cell Rep. January 26, 2016; 14 (3): 632-47.   


Paraxis is required for somite morphogenesis and differentiation in Xenopus laevis., Sánchez RS., Dev Dyn. August 1, 2015; 244 (8): 973-87.   


Multi-site phosphorylation regulates NeuroD4 activity during primary neurogenesis: a conserved mechanism amongst proneural proteins., Hardwick LJ., Neural Dev. June 18, 2015; 10 15.   


Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation., Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.   


Evaluation of developmental toxicity and teratogenicity of diclofenac using Xenopus embryos., Chae JP., Chemosphere. February 1, 2015; 120 52-8.


A posttranscriptional mechanism that controls Ptbp1 abundance in the Xenopus epidermis., Méreau A., Mol Cell Biol. February 1, 2015; 35 (4): 758-68.   


Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites., Kim YJ., Dev Biol. January 1, 2015; 397 (1): 129-39.   


Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression., Shi J., Dev Biol. November 15, 2014; 395 (2): 287-98.   


Specific induction of cranial placode cells from Xenopus ectoderm by modulating the levels of BMP, Wnt and FGF signaling., Watanabe T., Genesis. October 1, 2014; .


Retinoic acid induced-1 (Rai1) regulates craniofacial and brain development in Xenopus., Tahir R., Mech Dev. August 1, 2014; 133 91-104.   


High-resolution analysis of gene activity during the Xenopus mid-blastula transition., Collart C., Development. May 1, 2014; 141 (9): 1927-39.   


Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus., Young JJ., Development. April 1, 2014; 141 (8): 1683-93.   


Validation of novel reference genes for RT-qPCR studies of gene expression in Xenopus tropicalis during embryonic and post-embryonic development., Dhorne-Pollet S., Dev Dyn. June 1, 2013; 242 (6): 709-17.   


Physiological responses of Xenopus laevis tadpoles exposed to cyanobacterial biomass containing microcystin-LR., Ziková A., Aquat Toxicol. March 15, 2013; 128-129 25-33.


Expression of pluripotency factors in larval epithelia of the frog Xenopus: evidence for the presence of cornea epithelial stem cells., Perry KJ., Dev Biol. February 15, 2013; 374 (2): 281-94.   


Imparting regenerative capacity to limbs by progenitor cell transplantation., Lin G., Dev Cell. January 14, 2013; 24 (1): 41-51.   


Regulation of thyroid hormone sensitivity by differential expression of the thyroid hormone receptor during Xenopus metamorphosis., Nakajima K., Genes Cells. August 1, 2012; 17 (8): 645-59.   


Early, nonciliary role for microtubule proteins in left-right patterning is conserved across kingdoms., Lobikin M., Proc Natl Acad Sci U S A. July 31, 2012; 109 (31): 12586-91.   


TAK1 promotes BMP4/Smad1 signaling via inhibition of erk MAPK: a new link in the FGF/BMP regulatory network., Liu C., Differentiation. April 1, 2012; 83 (4): 210-9.   


Identification and expression analysis of GPAT family genes during early development of Xenopus laevis., Bertolesi GE., Gene Expr Patterns. January 1, 2012; 12 (7-8): 219-27.   


Cell cycle-regulated multi-site phosphorylation of Neurogenin 2 coordinates cell cycling with differentiation during neurogenesis., Ali F., Development. October 1, 2011; 138 (19): 4267-77.   


Evolutionary importance of translation elongation factor eEF1A variant switching: eEF1A1 down-regulation in muscle is conserved in Xenopus but is controlled at a post-transcriptional level., Newbery HJ., Biochem Biophys Res Commun. July 22, 2011; 411 (1): 19-24.   


Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo., Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.   

???pagination.result.page??? 1 2 ???pagination.result.next???