Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (60) Expression Attributions Wiki
XB-ANAT-325

Papers associated with mesonephric early distal tubule

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A polycystin-2 protein with modified channel properties leads to an increased diameter of renal tubules and to renal cysts., Grosch M., J Cell Sci. August 15, 2021; 134 (16):                 


Nephron Patterning: Lessons from Xenopus, Zebrafish, and Mouse Studies., Desgrange A., Cells. September 11, 2015; 4 (3): 483-99.      


Essential amino acid transporter Lat4 (Slc43a2) is required for mouse development., Guetg A., J Physiol. March 1, 2015; 593 (5): 1273-89.


Functional consequences of NKCC2 splice isoforms: insights from a Xenopus oocyte model., Lu L., Am J Physiol Renal Physiol. April 1, 2014; 306 (7): F710-20.


Characterization of the mouse ClC-K1/Barttin chloride channel., L'Hoste S., Biochim Biophys Acta. November 1, 2013; 1828 (11): 2399-409.


The human sodium-dependent ascorbic acid transporters SLC23A1 and SLC23A2 do not mediate ascorbic acid release in the proximal renal epithelial cell., Eck P., Physiol Rep. November 1, 2013; 1 (6): e00136.            


A minor role of WNK3 in regulating phosphorylation of renal NKCC2 and NCC co-transporters in vivo., Oi K., Biol Open. February 15, 2012; 1 (2): 120-7.              


Activation of the bumetanide-sensitive Na+,K+,2Cl- cotransporter (NKCC2) is facilitated by Tamm-Horsfall protein in a chloride-sensitive manner., Mutig K., J Biol Chem. August 26, 2011; 286 (34): 30200-10.


Rare mutations in the human Na-K-Cl cotransporter (NKCC2) associated with lower blood pressure exhibit impaired processing and transport function., Monette MY., Am J Physiol Renal Physiol. April 1, 2011; 300 (4): F840-7.


Downregulation of NCC and NKCC2 cotransporters by kidney-specific WNK1 revealed by gene disruption and transgenic mouse models., Liu Z., Hum Mol Genet. March 1, 2011; 20 (5): 855-66.


Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function., Renigunta A., J Biol Chem. January 21, 2011; 286 (3): 2224-35.


The glycolytic enzymes glyceraldehyde 3-phosphate dehydrogenase and enolase interact with the renal epithelial K+ channel ROMK2 and regulate its function., Renigunta A., Cell Physiol Biochem. January 1, 2011; 28 (4): 663-72.


Sodium-bicarbonate cotransporter NBCn1 in the kidney medullary thick ascending limb cell line is upregulated under acidic conditions and enhances ammonium transport., Lee S., Exp Physiol. September 1, 2010; 95 (9): 926-37.


Localization and functional characterization of the human NKCC2 isoforms., Carota I., Acta Physiol (Oxf). July 1, 2010; 199 (3): 327-38.


Functional expression of the Na-K-2Cl cotransporter NKCC2 in mammalian cells fails to confirm the dominant-negative effect of the AF splice variant., Hannemann A., J Biol Chem. December 18, 2009; 284 (51): 35348-58.              


Parameter estimation for mathematical models of NKCC2 cotransporter isoforms., Marcano M., Am J Physiol Renal Physiol. February 1, 2009; 296 (2): F369-81.


CLCNKB-T481S and essential hypertension in a Ghanaian population., Sile S., J Hypertens. February 1, 2009; 27 (2): 298-304.


Renal Na+-K+-Cl- cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent., Welker P., Am J Physiol Renal Physiol. September 1, 2008; 295 (3): F789-802.


Mechanism of urinary calcium regulation by urinary magnesium and pH., Bonny O., J Am Soc Nephrol. August 1, 2008; 19 (8): 1530-7.


Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases., Ponce-Coria J., Proc Natl Acad Sci U S A. June 17, 2008; 105 (24): 8458-63.


Organization of the pronephric kidney revealed by large-scale gene expression mapping., Raciti D., Genome Biol. January 1, 2008; 9 (5): R84.                                                                        


The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros., Wingert RA., PLoS Genet. October 1, 2007; 3 (10): 1922-38.                


The prepattern transcription factor Irx3 directs nephron segment identity., Reggiani L., Genes Dev. September 15, 2007; 21 (18): 2358-70.                


The residues determining differences in ion affinities among the alternative splice variants F, A, and B of the mammalian renal Na-K-Cl cotransporter (NKCC2)., Giménez I., J Biol Chem. March 2, 2007; 282 (9): 6540-7.


Dietary electrolyte-driven responses in the renal WNK kinase pathway in vivo., O'Reilly M., J Am Soc Nephrol. September 1, 2006; 17 (9): 2402-13.


Late-onset manifestation of antenatal Bartter syndrome as a result of residual function of the mutated renal Na+-K+-2Cl- co-transporter., Pressler CA., J Am Soc Nephrol. August 1, 2006; 17 (8): 2136-42.


CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney., Lu M., J Clin Invest. March 1, 2006; 116 (3): 797-807.


WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl- cotransporters required for normal blood pressure homeostasis., Rinehart J., Proc Natl Acad Sci U S A. November 15, 2005; 102 (46): 16777-82.


Apical localization of renal K channel was not altered in mutant WNK4 transgenic mice., Yamauchi K., Biochem Biophys Res Commun. July 8, 2005; 332 (3): 750-5.


Structural locus of the pH gate in the Kir1.1 inward rectifier channel., Sackin H., Biophys J. April 1, 2005; 88 (4): 2597-606.


Ion and diuretic specificity of chimeric proteins between apical Na(+)-K(+)-2Cl(-) and Na(+)-Cl(-) cotransporters., Tovar-Palacio C., Am J Physiol Renal Physiol. September 1, 2004; 287 (3): F570-7.


Dimeric architecture of the human bumetanide-sensitive Na-K-Cl Co-transporter., Starremans PG., J Am Soc Nephrol. December 1, 2003; 14 (12): 3039-46.


Mutations in the human Na-K-2Cl cotransporter (NKCC2) identified in Bartter syndrome type I consistently result in nonfunctional transporters., Starremans PG., J Am Soc Nephrol. June 1, 2003; 14 (6): 1419-26.


Functional comparison of renal Na-K-Cl cotransporters between distant species., Gagnon E., Am J Physiol Cell Physiol. February 1, 2003; 284 (2): C365-70.


Expression of the Na+-HCO-3 cotransporter NBC4 in rat kidney and characterization of a novel NBC4 variant., Xu J., Am J Physiol Renal Physiol. January 1, 2003; 284 (1): F41-50.


Functional properties of the apical Na+-K+-2Cl- cotransporter isoforms., Plata C., J Biol Chem. March 29, 2002; 277 (13): 11004-12.


Spatially distributed alternative splice variants of the renal Na-K-Cl cotransporter exhibit dramatically different affinities for the transported ions., Giménez I., J Biol Chem. March 15, 2002; 277 (11): 8767-70.


Functional implications of mutations in the human renal outer medullary potassium channel (ROMK2) identified in Bartter syndrome., Starremans PG., Pflugers Arch. January 1, 2002; 443 (3): 466-72.


Channel-lining residues of the AMPA receptor M2 segment: structural environment of the Q/R site and identification of the selectivity filter., Kuner T., J Neurosci. June 15, 2001; 21 (12): 4162-72.


Cellular localization of the potassium channel Kir7.1 in guinea pig and human kidney., Derst C., Kidney Int. June 1, 2001; 59 (6): 2197-205.


Alternatively spliced isoform of apical Na(+)-K(+)-Cl(-) cotransporter gene encodes a furosemide-sensitive Na(+)-Cl(-)cotransporter., Plata C., Am J Physiol Renal Physiol. April 1, 2001; 280 (4): F574-82.


In vivo role of CLC chloride channels in the kidney., Uchida S., Am J Physiol Renal Physiol. November 1, 2000; 279 (5): F802-8.


Deranged transcriptional regulation of cell-volume-sensitive kinase hSGK in diabetic nephropathy., Lang F., Proc Natl Acad Sci U S A. July 5, 2000; 97 (14): 8157-62.


Rat homolog of sulfonylurea receptor 2B determines glibenclamide sensitivity of ROMK2 in Xenopus laevis oocyte., Tanemoto M., Am J Physiol Renal Physiol. April 1, 2000; 278 (4): F659-66.


A Bartter's syndrome mutation of ROMK1 exerts dominant negative effects on K(+) conductance., Kunzelmann K., Cell Physiol Biochem. January 1, 2000; 10 (3): 117-24.


Isoforms of the Na-K-2Cl cotransporter in murine TAL II. Functional characterization and activation by cAMP., Plata C., Am J Physiol. March 1, 1999; 276 (3): F359-66.


Isoforms of the Na-K-2Cl cotransporter in murine TAL I. Molecular characterization and intrarenal localization., Mount DB., Am J Physiol. March 1, 1999; 276 (3): F347-58.


Regulation of the ROMK potassium channel in the kidney., Wald H., Exp Nephrol. January 1, 1999; 7 (3): 201-6.


Localization of ROMK channels in the rat kidney., Mennitt PA., J Am Soc Nephrol. December 1, 1997; 8 (12): 1823-30.


Arachidonic acid inhibits activity of cloned renal K+ channel, ROMK1., Macica CM., Am J Physiol. September 1, 1996; 271 (3 Pt 2): F588-94.

???pagination.result.page??? 1 2 ???pagination.result.next???