Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (149) Expression Attributions Wiki
XB-ANAT-3853

Papers associated with melanotrope

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Brain-derived neurotrophic factor in the hypothalamo-hypophyseal system of Xenopus laevis., Wang L., Ann N Y Acad Sci. April 1, 2005; 1040 512-4.


Calcium influx through voltage-operated calcium channels is required for proopiomelanocortin protein expression in Xenopus melanotropes., van den Hurk MJ., Ann N Y Acad Sci. April 1, 2005; 1040 494-7.


Analysis of Xenopus melanotrope cell size and POMC-gene expression., Corstens GJ., Ann N Y Acad Sci. April 1, 2005; 1040 269-72.


Neuronal, neurohormonal, and autocrine control of Xenopus melanotrope cell activity., Roubos EW., Ann N Y Acad Sci. April 1, 2005; 1040 172-83.


In situ hybridization localization of TRH precursor and TRH receptor mRNAs in the brain and pituitary of Xenopus laevis., Galas L., Ann N Y Acad Sci. April 1, 2005; 1040 95-105.


A fast method to study the secretory activity of neuroendocrine cells at the ultrastructural level., Van Herp F., J Microsc. April 1, 2005; 218 (Pt 1): 79-83.


The extracellular calcium-sensing receptor increases the number of calcium steps and action currents in pituitary melanotrope cells., van den Hurk MJ., Neurosci Lett. March 29, 2005; 377 (2): 125-9.


Comparative analysis and expression of neuroserpin in Xenopus laevis., de Groot DM., Neuroendocrinology. January 1, 2005; 82 (1): 11-20.  


Melanotrope cells of Xenopus laevis express multiple types of high-voltage-activated Ca2+ channels., Zhang HY., J Neuroendocrinol. January 1, 2005; 17 (1): 1-9.


Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis., Tonosaki Y., J Neuroendocrinol. November 1, 2004; 16 (11): 894-905.


A cell-specific transgenic approach in Xenopus reveals the importance of a functional p24 system for a secretory cell., Bouw G., Mol Biol Cell. March 1, 2004; 15 (3): 1244-53.


Dopamine D2-receptor activation differentially inhibits N- and R-type Ca2+ channels in Xenopus melanotrope cells., Zhang H., Neuroendocrinology. January 1, 2004; 80 (6): 368-78.


Differential distribution and regulation of expression of synaptosomal-associated protein of 25 kDa isoforms in the Xenopus pituitary gland and brain., Kolk SM., Neuroscience. January 1, 2004; 128 (3): 531-43.


Activity-dependent dynamics of coexisting brain-derived neurotrophic factor, pro-opiomelanocortin and alpha-melanophore-stimulating hormone in melanotrope cells of Xenopus laevis., Wang LC., J Neuroendocrinol. January 1, 2004; 16 (1): 19-25.


Role of cortical filamentous actin in the melanotrope cell of Xenopus laevis., Corstens GJ., Gen Comp Endocrinol. November 1, 2003; 134 (2): 95-102.


Expression and characterization of the extracellular Ca(2+)-sensing receptor in melanotrope cells of Xenopus laevis., van den Hurk MJ., Endocrinology. June 1, 2003; 144 (6): 2524-33.


Ca2+ oscillations in melanotropes of Xenopus laevis: their generation, propagation, and function., Jenks BG., Gen Comp Endocrinol. May 1, 2003; 131 (3): 209-19.


Electrical membrane activity and intracellular calcium buffering control exocytosis efficiency in Xenopus melanotrope cells., Scheenen WJ., Neuroendocrinology. March 1, 2003; 77 (3): 153-61.


Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation., Kramer BM., J Comp Neurol. January 27, 2003; 456 (1): 73-83.                  


Demonstration of postsynaptic receptor plasticity in an amphibian neuroendocrine interface., Jenks BG., J Neuroendocrinol. November 1, 2002; 14 (11): 843-5.


Sauvagine regulates Ca2+ oscillations and electrical membrane activity of melanotrope cells of Xenopus laevis., Cornelisse LN., J Neuroendocrinol. October 1, 2002; 14 (10): 778-87.


TRH signal transduction in melanotrope cells of Xenopus laevis., Lieste JR., Gen Comp Endocrinol. June 1, 2002; 127 (1): 80-8.


New aspects of signal transduction in the Xenopus laevis melanotrope cell., Roubos EW., Gen Comp Endocrinol. May 1, 2002; 126 (3): 255-60.


Regulation of neurons in the suprachiasmatic nucleus of Xenopus laevis., Kramer BM., Comp Biochem Physiol B Biochem Mol Biol. May 1, 2002; 132 (1): 269-74.


Multiple control and dynamic response of the Xenopus melanotrope cell., Kolk SM., Comp Biochem Physiol B Biochem Mol Biol. May 1, 2002; 132 (1): 257-68.


Transgene-driven protein expression specific to the intermediate pituitary melanotrope cells of Xenopus laevis., Jansen EJ., FEBS Lett. April 10, 2002; 516 (1-3): 201-7.


Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis., Kramer BM., Endocrinology. April 1, 2002; 143 (4): 1337-45.


Cell-type-specific and selectively induced expression of members of the p24 family of putative cargo receptors., Rötter J., J Cell Sci. March 1, 2002; 115 (Pt 5): 1049-58.  


Localization of p24 putative cargo receptors in the early secretory pathway depends on the biosynthetic activity of the cell., Kuiper RP., Biochem J. December 1, 2001; 360 (Pt 2): 421-9.


Intracellular calcium buffering shapes calcium oscillations in Xenopus melanotropes., Koopman WJ., Pflugers Arch. November 1, 2001; 443 (2): 250-6.


Dynamics and plasticity of peptidergic control centres in the retino-brain-pituitary system of Xenopus laevis., Kramer BM., Microsc Res Tech. August 1, 2001; 54 (3): 188-99.


Membrane-initiated Ca(2+) signals are reshaped during propagation to subcellular regions., Koopman WJ., Biophys J. July 1, 2001; 81 (1): 57-65.


Physiological control of Xunc18 expression in neuroendocrine melanotrope cells of Xenopus laevis., Kolk SM., Endocrinology. May 1, 2001; 142 (5): 1950-7.


Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation., Kramer BM., J Comp Neurol. April 9, 2001; 432 (3): 346-55.                    


Minimal model for intracellular calcium oscillations and electrical bursting in melanotrope cells of Xenopus laevis., Cornelisse LN., Neural Comput. January 1, 2001; 13 (1): 113-37.


Localization and physiological regulation of the exocytosis protein SNAP-25 in the brain and pituitary gland of Xenopus laevis., Kolk SM., J Neuroendocrinol. July 1, 2000; 12 (7): 694-706.


Endogenous production of nitric oxide and effects of nitric oxide and superoxide on melanotrope functioning in the pituitary pars intermedia of Xenopus laevis., Allaerts W., Nitric Oxide. February 1, 2000; 4 (1): 15-28.


Differential induction of two p24delta putative cargo receptors upon activation of a prohormone-producing cell., Kuiper RP., Mol Biol Cell. January 1, 2000; 11 (1): 131-40.


Biosynthesis of the vacuolar H+-ATPase accessory subunit Ac45 in Xenopus pituitary., Holthuis JC., Eur J Biochem. June 1, 1999; 262 (2): 484-91.


Serotonergic innervation of the pituitary pars intermedia of xenopus laevis., Ubink R., J Neuroendocrinol. March 1, 1999; 11 (3): 211-9.


Evidence that Ca2+-waves in Xenopus melanotropes depend on calcium-induced calcium release: a fluorescence correlation microscopy and linescanning study., Koopman WJ., Cell Calcium. January 1, 1999; 26 (1-2): 59-67.


Dynamics of proopiomelanocortin and prohormone convertase 2 gene expression in Xenopus melanotrope cells during long-term background adaptation., Dotman CH., J Endocrinol. November 1, 1998; 159 (2): 281-6.


Action currents generate stepwise intracellular Ca2+ patterns in a neuroendocrine cell., Lieste JR., J Biol Chem. October 2, 1998; 273 (40): 25686-94.


Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: a confocal laser-scanning microscopy study., Ubink R., J Comp Neurol. July 20, 1998; 397 (1): 60-8.          


The significance of multiple inhibitory mechanisms converging on the melanotrope cell of Xenopus laevis., Jenks B., Ann N Y Acad Sci. May 15, 1998; 839 229-34.


Cholinergic regulation of the pituitary: autoexcitatory control by acetylcholine of melanotrope cell activity in Xenopus laevis., van Strien FJ., Ann N Y Acad Sci. May 15, 1998; 839 66-73.


Distribution of pro-opiomelanocortin and its peptide end products in the brain and hypophysis of the aquatic toad, Xenopus laevis., Tuinhof R., Cell Tissue Res. May 1, 1998; 292 (2): 251-65.


Forebrain differentiation and axonogenesis in amphibians: I. Differentiation of the suprachiasmatic nucleus in relation to background adaptation behavior., Eagleson GW., Brain Behav Evol. January 1, 1998; 52 (1): 23-36.


Nitric oxide synthase and background adaptation in Xenopus laevis., Allaerts W., J Chem Neuroanat. December 1, 1997; 14 (1): 21-31.


The secretory granule and pro-opiomelanocortin processing in Xenopus melanotrope cells during background adaptation., Berghs CA., J Histochem Cytochem. December 1, 1997; 45 (12): 1673-82.  

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???