Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (149) Expression Attributions Wiki
XB-ANAT-3853

Papers associated with melanotrope

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3

Sort Newest To Oldest Sort Oldest To Newest

Background adaptation by Xenopus laevis: a model for studying neuronal information processing in the pituitary pars intermedia., Roubos EW., Comp Biochem Physiol A Physiol. November 1, 1997; 118 (3): 533-50.


Kinetics of calcium steps underlying calcium oscillations in melanotrope cells of Xenopus laevis., Koopman WJ., Cell Calcium. September 1, 1997; 22 (3): 167-78.


Physiologically induced Fos expression in the hypothalamo-hypophyseal system of Xenopus laevis., Ubink R., Neuroendocrinology. June 1, 1997; 65 (6): 413-22.


Immunocytochemical localization of prohormone convertases PC1 and PC2 in the anuran pituitary gland: subcellular localization in corticotrope and melanotrope cells., Kurabuchi S., Cell Tissue Res. June 1, 1997; 288 (3): 485-96.


Neuroendocrine gamma-aminobutyric acid (GABA): functional differences in GABAA versus GABAB receptor inhibition of the melanotrope cell of Xenopus laevis., Buzzi M., Endocrinology. January 1, 1997; 138 (1): 203-12.


Neuroendocrine γ-Aminobutyric Acid (GABA): Functional Differences in GABAA Versus GABAB Receptor Inhibition of the Melanotrope Cell of Xenopus laevis1., Buzzi M., Endocrinology. January 1, 1997; 138 (1): 203-212.


Calcium oscillations in melanotrope cells of Xenopus laevis are differentially regulated by cAMP-dependent and cAMP-independent mechanisms., Lieste JR., Cell Calcium. October 1, 1996; 20 (4): 329-37.


Acetylcholine autoexcites the release of proopiomelanocortin-derived peptides from melanotrope cells of Xenopus laevis via an M1 muscarinic receptor., Van Strien FJ., Endocrinology. October 1, 1996; 137 (10): 4298-307.


Spatial and temporal aspects of Ca2+ oscillations in Xenopus laevis melanotrope cells., Scheenen WJ., Cell Calcium. March 1, 1996; 19 (3): 219-27.


Background adaptation and synapse plasticity in the pars intermedia of Xenopus laevis., Berghs CA., Neuroscience. February 1, 1996; 70 (3): 833-41.


Identification of POMC processing products in single melanotrope cells by matrix-assisted laser desorption/ionization mass spectrometry., van Strien FJ., FEBS Lett. January 29, 1996; 379 (2): 165-70.


Inhibition of alpha-MSH secretion is associated with increased cyclic-AMP egress from the neurointermediate lobe of Xenopus laevis., Leenders HJ., Life Sci. November 17, 1995; 57 (26): 2447-53.


Biosynthesis and processing of the N-terminal part of proopiomelanocortin in Xenopus laevis: characterization of gamma-MSH peptides., van Strien FJ., J Neuroendocrinol. October 1, 1995; 7 (10): 807-15.


Molecular probing of the secretory pathway in peptide hormone-producing cells., Holthuis JC., J Cell Sci. October 1, 1995; 108 ( Pt 10) 3295-305.


Differential acetylation of pro-opiomelanocortin-derived peptides in the pituitary gland of Xenopus laevis in relation to background adaptation., van Strien FJ., J Endocrinol. July 1, 1995; 146 (1): 159-67.


Neuropeptide Y inhibits Ca2+ oscillations, cyclic AMP, and secretion in melanotrope cells of Xenopus laevis via a Y1 receptor., Scheenen WJ., Peptides. January 1, 1995; 16 (5): 889-95.


The secretion of alpha-MSH from xenopus melanotropes involves calcium influx through omega-conotoxin-sensitive voltage-operated calcium channels., Scheenen WJ., J Neuroendocrinol. August 1, 1994; 6 (4): 457-64.


Central control of melanotrope cells of Xenopus laevis., Tuinhof R., Eur J Morphol. August 1, 1994; 32 (2-4): 307-10.


Involvement of retinohypothalamic input, suprachiasmatic nucleus, magnocellular nucleus and locus coeruleus in control of melanotrope cells of Xenopus laevis: a retrograde and anterograde tracing study., Tuinhof R., Neuroscience. July 1, 1994; 61 (2): 411-20.


Action of stimulatory and inhibitory alpha-MSH secretagogues on spontaneous calcium oscillations in melanotrope cells of Xenopus laevis., Scheenen WJ., Pflugers Arch. June 1, 1994; 427 (3-4): 244-51.


Spontaneous calcium oscillations in Xenopus laevis melanotrope cells are mediated by omega-conotoxin sensitive calcium channels., Scheenen WJ., Cell Calcium. January 1, 1994; 15 (1): 36-44.


Effects of background adaptation on alpha-MSH and beta-endorphin in secretory granule types of melanotrope cells of Xenopus laevis., Roubos EW., Cell Tissue Res. December 1, 1993; 274 (3): 587-96.


Immunocytochemistry and in situ hybridization of neuropeptide Y in the hypothalamus of Xenopus laevis in relation to background adaptation., Tuinhof R., Neuroscience. August 1, 1993; 55 (3): 667-75.


Melanotrophs of Xenopus laevis do respond directly to neuropeptide-Y as evidenced by reductions in secretion and cytosolic calcium pulsing in isolated cells., Kongsamut S., Endocrinology. July 1, 1993; 133 (1): 336-42.


Analysis of inositol phosphate metabolism in melanotrope cells of Xenopus laevis in relation to background adaptation., Jenks BG., Ann N Y Acad Sci. May 31, 1993; 680 188-98.


Control of melanotrope cell activity in Xenopus laevis., Roubos EW., Ann N Y Acad Sci. May 31, 1993; 680 130-4.


Spontaneous calcium oscillations in melanotrope cells of Xenopus laevis., Scheenen WJ., Ann N Y Acad Sci. May 31, 1993; 680 603-5.


Expression of the Xenopus D2 dopamine receptor. Tissue-specific regulation and two transcriptionally active genes but no evidence for alternative splicing., Martens GJ., Eur J Biochem. May 1, 1993; 213 (3): 1349-54.


Spontaneous cytosolic calcium pulsing detected in Xenopus melanotrophs: modulation by secreto-inhibitory and stimulant ligands., Shibuya I., Endocrinology. May 1, 1993; 132 (5): 2166-75.


Alpha,N-acetyl beta-endorphin [1-8] is the terminal product of processing of endorphins in the melanotrope cells of Xenopus laevis, as demonstrated by FAB tandem mass spectrometry., van Strien FJ., Biochem Biophys Res Commun. February 26, 1993; 191 (1): 262-8.


Analysis of gamma-aminobutyric acidB receptor function in the in vitro and in vivo regulation of alpha-melanotropin-stimulating hormone secretion from melanotrope cells of Xenopus laevis., De Koning HP., Endocrinology. February 1, 1993; 132 (2): 674-81.


Differential effects of coexisting dopamine, GABA and NPY on alpha-MSH secretion from melanotrope cells of Xenopus laevis., Leenders HJ., Life Sci. January 1, 1993; 52 (24): 1969-75.


Analysis of autofeedback mechanisms in the secretion of pro-opiomelanocortin-derived peptides by melanotrope cells of Xenopus laevis., de Koning HP., Gen Comp Endocrinol. September 1, 1992; 87 (3): 394-401.


Structure and expression of Xenopus prohormone convertase PC2., Braks JA., FEBS Lett. June 22, 1992; 305 (1): 45-50.


Transcriptional and posttranscriptional regulation of the proopiomelanocortin gene in the pars intermedia of the pituitary gland of Xenopus laevis., Ayoubi TA., Endocrinology. June 1, 1992; 130 (6): 3560-6.


Evolutionary conservation of the 14-3-3 protein., Martens GJ., Biochem Biophys Res Commun. May 15, 1992; 184 (3): 1456-9.


Demonstration of coexisting catecholamine (dopamine), amino acid (GABA), and peptide (NPY) involved in inhibition of melanotrope cell activity in Xenopus laevis: a quantitative ultrastructural, freeze-substitution immunocytochemical study., de Rijk EP., J Neurosci. March 1, 1992; 12 (3): 864-71.


Immunoblotting technique to study release of melanophore-stimulating hormone from individual melanotrope cells of the intermediate lobe of Xenopus laevis., de Rijk EP., Cytometry. January 1, 1992; 13 (8): 863-71.


Dynamics of cyclic-AMP efflux in relation to alpha-MSH secretion from melanotrope cells of Xenopus laevis., de Koning HP., Life Sci. January 1, 1992; 51 (21): 1667-73.


Why are several inhibitory transmitters present in the innervation of pituitary melanotrophs? Actions and interactions of dopamine, GABA and neuropeptide Y on secretion from neurointermediate lobes of Xenopus laevis., Kongsamut S., Neuroendocrinology. December 1, 1991; 54 (6): 599-606.


Indirect action of elevated potassium and neuropeptide Y on alpha MSH secretion from the pars intermedia of Xenopus laevis: a biochemical and morphological study., de Koning HP., Neuroendocrinology. July 1, 1991; 54 (1): 68-76.


Coordinated expression of 7B2 and alpha MSH in the melanotrope cells of Xenopus laevis. An immunocytochemical and in situ hybridization study., Ayoubi TA., Cell Tissue Res. May 1, 1991; 264 (2): 329-34.


Studies on pituitary melanotrophs reveal the novel GABAB antagonist CGP 35-348 to be the first such compound effective on endocrine cells., Shibuya I., Proc Biol Sci. February 22, 1991; 243 (1307): 129-37.


The CRF-related peptide sauvagine stimulates and the GABAB receptor agonist baclofen inhibits cyclic-AMP production in melanotrope cells of Xenopus laevis., Jenks BG., Life Sci. January 1, 1991; 48 (17): 1633-7.


Demonstration of dopamine in electron-dense synaptic vesicles in the pars intermedia of Xenopus laevis, by freeze substitution and postembedding immunogold electron microscopy., van Strien FJ., Histochemistry. January 1, 1991; 96 (6): 505-10.


A slow and a fast secretory compartment of POMC-derived peptides in the neurointermediate lobe of the amphibian Xenopus laevis., Van Zoest ID., Comp Biochem Physiol C Comp Pharmacol Toxicol. January 1, 1990; 96 (1): 199-203.


Regulation of cyclic-AMP synthesis in amphibian melanotrope cells through catecholamine and GABA receptors., Verburg-van Kemenade BM., Life Sci. May 11, 1987; 40 (19): 1859-67.


Regulation of MSH release from the neurointermediate lobe of Xenopus laevis by CRF-like peptides., Verburg-Van Kemenade BM., Peptides. January 1, 1987; 8 (6): 1093-100.


GABA and dopamine act directly on melanotropes of Xenopus to inhibit MSH secretion., Verburg-Van Kemenade BM., Brain Res Bull. November 1, 1986; 17 (5): 697-704.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3